144,695 research outputs found

    From Hashing to CNNs: Training BinaryWeight Networks via Hashing

    Full text link
    Deep convolutional neural networks (CNNs) have shown appealing performance on various computer vision tasks in recent years. This motivates people to deploy CNNs to realworld applications. However, most of state-of-art CNNs require large memory and computational resources, which hinders the deployment on mobile devices. Recent studies show that low-bit weight representation can reduce much storage and memory demand, and also can achieve efficient network inference. To achieve this goal, we propose a novel approach named BWNH to train Binary Weight Networks via Hashing. In this paper, we first reveal the strong connection between inner-product preserving hashing and binary weight networks, and show that training binary weight networks can be intrinsically regarded as a hashing problem. Based on this perspective, we propose an alternating optimization method to learn the hash codes instead of directly learning binary weights. Extensive experiments on CIFAR10, CIFAR100 and ImageNet demonstrate that our proposed BWNH outperforms current state-of-art by a large margin

    Binary Representation Learning for Large Scale Visual Data

    Get PDF
    The exponentially growing modern media created large amount of multimodal or multidomain visual data, which usually reside in high dimensional space. And it is crucial to provide not only effective but also efficient understanding of the data.In this dissertation, we focus on learning binary representation of visual dataset, whose primary use has been hash code for retrieval purpose. Simultaneously it serves as multifunctional feature that can also be used for various computer vision tasks. Essentially, this is achieved by discriminative learning that preserves the supervision information in the binary representation.By using deep networks such as convolutional neural networks (CNNs) as backbones, and effective binary embedding algorithm that is seamlessly integrated into the learning process, we achieve state-of-the art performance on several settings. First, we study the supervised binary representation learning problem by using label information directly instead of pairwise similarity or triplet loss. By considering images and associated textual information, we study the cross-modal representation learning. CNNs are used in both image and text embedding, and we are able to perform retrieval and prediction across these modalities. Furthermore, by utilizing unlabeled images from a different domain, we propose to use adversarial learning to connect these domains. Finally, we also consider progressive learning for more efficient learning and instance-level representation learning to provide finer granularity understanding. This dissertation demonstrates that binary representation is versatile and powerful under various circumstances with different tasks

    3D ShapeNets: A Deep Representation for Volumetric Shapes

    Full text link
    3D shape is a crucial but heavily underutilized cue in today's computer vision systems, mostly due to the lack of a good generic shape representation. With the recent availability of inexpensive 2.5D depth sensors (e.g. Microsoft Kinect), it is becoming increasingly important to have a powerful 3D shape representation in the loop. Apart from category recognition, recovering full 3D shapes from view-based 2.5D depth maps is also a critical part of visual understanding. To this end, we propose to represent a geometric 3D shape as a probability distribution of binary variables on a 3D voxel grid, using a Convolutional Deep Belief Network. Our model, 3D ShapeNets, learns the distribution of complex 3D shapes across different object categories and arbitrary poses from raw CAD data, and discovers hierarchical compositional part representations automatically. It naturally supports joint object recognition and shape completion from 2.5D depth maps, and it enables active object recognition through view planning. To train our 3D deep learning model, we construct ModelNet -- a large-scale 3D CAD model dataset. Extensive experiments show that our 3D deep representation enables significant performance improvement over the-state-of-the-arts in a variety of tasks.Comment: to be appeared in CVPR 201

    Regressing Transformers for Data-efficient Visual Place Recognition

    Get PDF
    Visual place recognition is a critical task in computer vision, especially for localization and navigation systems. Existing methods often rely on contrastive learning: image descriptors are trained to have small distance for similar images and larger distance for dissimilar ones in a latent space. However, this approach struggles to ensure accurate distance-based image similarity representation, particularly when training with binary pairwise labels, and complex re-ranking strategies are required. This work introduces a fresh perspective by framing place recognition as a regression problem, using camera field-of-view overlap as similarity ground truth for learning. By optimizing image descriptors to align directly with graded similarity labels, this approach enhances ranking capabilities without expensive re-ranking, offering data-efficient training and strong generalization across several benchmark datasets

    EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation

    Full text link
    During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank has increased more than 15 fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence however is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D-convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The 2-layer architecture was investigated on a large dataset of 63,558 enzymes from the Protein Data Bank and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.Comment: 11 pages, 6 figure

    Predicting Aesthetic Score Distribution through Cumulative Jensen-Shannon Divergence

    Full text link
    Aesthetic quality prediction is a challenging task in the computer vision community because of the complex interplay with semantic contents and photographic technologies. Recent studies on the powerful deep learning based aesthetic quality assessment usually use a binary high-low label or a numerical score to represent the aesthetic quality. However the scalar representation cannot describe well the underlying varieties of the human perception of aesthetics. In this work, we propose to predict the aesthetic score distribution (i.e., a score distribution vector of the ordinal basic human ratings) using Deep Convolutional Neural Network (DCNN). Conventional DCNNs which aim to minimize the difference between the predicted scalar numbers or vectors and the ground truth cannot be directly used for the ordinal basic rating distribution. Thus, a novel CNN based on the Cumulative distribution with Jensen-Shannon divergence (CJS-CNN) is presented to predict the aesthetic score distribution of human ratings, with a new reliability-sensitive learning method based on the kurtosis of the score distribution, which eliminates the requirement of the original full data of human ratings (without normalization). Experimental results on large scale aesthetic dataset demonstrate the effectiveness of our introduced CJS-CNN in this task.Comment: AAAI Conference on Artificial Intelligence (AAAI), New Orleans, Louisiana, USA. 2-7 Feb. 201

    Learning Sparse & Ternary Neural Networks with Entropy-Constrained Trained Ternarization (EC2T)

    Full text link
    Deep neural networks (DNN) have shown remarkable success in a variety of machine learning applications. The capacity of these models (i.e., number of parameters), endows them with expressive power and allows them to reach the desired performance. In recent years, there is an increasing interest in deploying DNNs to resource-constrained devices (i.e., mobile devices) with limited energy, memory, and computational budget. To address this problem, we propose Entropy-Constrained Trained Ternarization (EC2T), a general framework to create sparse and ternary neural networks which are efficient in terms of storage (e.g., at most two binary-masks and two full-precision values are required to save a weight matrix) and computation (e.g., MAC operations are reduced to a few accumulations plus two multiplications). This approach consists of two steps. First, a super-network is created by scaling the dimensions of a pre-trained model (i.e., its width and depth). Subsequently, this super-network is simultaneously pruned (using an entropy constraint) and quantized (that is, ternary values are assigned layer-wise) in a training process, resulting in a sparse and ternary network representation. We validate the proposed approach in CIFAR-10, CIFAR-100, and ImageNet datasets, showing its effectiveness in image classification tasks.Comment: Proceedings of the CVPR'20 Joint Workshop on Efficient Deep Learning in Computer Vision. Code is available at https://github.com/d-becking/efficientCNN

    RICH AND EFFICIENT VISUAL DATA REPRESENTATION

    Get PDF
    Increasing the size of training data in many computer vision tasks has shown to be very effective. Using large scale image datasets (e.g. ImageNet) with simple learning techniques (e.g. linear classifiers) one can achieve state-of-the-art performance in object recognition compared to sophisticated learning techniques on smaller image sets. Semantic search on visual data has become very popular. There are billions of images on the internet and the number is increasing every day. Dealing with large scale image sets is intense per se. They take a significant amount of memory that makes it impossible to process the images with complex algorithms on single CPU machines. Finding an efficient image representation can be a key to attack this problem. A representation being efficient is not enough for image understanding. It should be comprehensive and rich in carrying semantic information. In this proposal we develop an approach to computing binary codes that provide a rich and efficient image representation. We demonstrate several tasks in which binary features can be very effective. We show how binary features can speed up large scale image classification. We present learning techniques to learn the binary features from supervised image set (With different types of semantic supervision; class labels, textual descriptions). We propose several problems that are very important in finding and using efficient image representation
    • …
    corecore