1,783 research outputs found

    Tree-Seed Algorithm for Large-Scale Binary Optimization

    Get PDF
    Population-based swarm or evolutionary computation algorithms in optimization are attracted the interest of the researchers due their simple structure, optimization performance, easy-adaptation. Binary optimization problems can be also solved by using these algorithms. This paper focuses on solving large scale binary optimization problems by using Tree-Seed Algorithm (TSA) proposed for solving continuous optimization problems by imitating relationship between the trees and their seeds in nature. The basic TSA is modified by using xor logic gate for solving binary optimization problems in this study. In order to investigate the performance of the proposed algorithm, the numeric benchmark problems with the different dimensions are considered and obtained results show that the proposed algorithm produces effective and comparable solutions in terms of solution quality.Keywords: binary optimization, tree-seed algorithm, xor-gate, large-scale optimizatio

    Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces

    Full text link
    Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed (n) sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.Comment: 17 pages, 7 figure

    Optimizing The Riparian Buffer: Harold Brook In The Skaneateles Lake Watershed, New York

    Get PDF
    The use of riparian land buffers to protect water quality for human consumption and wildlife habitat has become an important conservation tool of both government and non-government agencies. The funds available to acquire private lands for riparian buffers are limited, however, and not all land contributes to water quality goals in the same way. Conservation agencies must therefore identify effective ways to allocate their scarce budgets in heterogeneous landscapes. We demonstrate how the acquisition of land for a riparian buffer can be viewed as a binary optimization problem and we apply the resulting model to a case study in New York (JEL Q15, Q25). Working Paper # 2002-00
    • …
    corecore