394,115 research outputs found

    Stability of supercooled binary liquid mixtures

    Get PDF
    Recently the supercooled Wahnstrom binary Lennard-Jones mixture was partially crystallized into MgZn2{\rm MgZn_2} phase crystals in lengthy Molecular Dynamics simulations. We present Molecular Dynamics simulations of a modified Kob-Andersen binary Lennard-Jones mixture that also crystallizes in lengthy simulations, here however by forming pure fcc crystals of the majority component. The two findings motivate this paper that gives a general thermodynamic and kinetic treatment of the stability of supercooled binary mixtures, emphasizing the importance of negative mixing enthalpy whenever present. The theory is used to estimate the crystallization time in a Kob-Andersen mixture from the crystallization time in a series of relared systems. At T=0.40 we estimate this time to be 5×107\times 10^{7} time units (1.ms\approx 1. ms). A new binary Lennard-Jones mixture is proposed that is not prone to crystallization and faster to simulate than the two standard binary Lennard-Jones mixtures; this is obtained by removing the like-particle attractions by switching to Weeks-Chandler-Andersen type potentials, while maintaining the unlike-particle attraction

    Demixing behavior in two-dimensional mixtures of anisotropic hard bodies

    Get PDF
    Scaled particle theory for a binary mixture of hard discorectangles and for a binary mixture of hard rectangles is used to predict possible liquid-crystal demixing scenarios in two dimensions. Through a bifurcation analysis from the isotropic phase, it is shown that isotropic-nematic demixing is possible in two-dimensional liquid-crystal mixtures composed of hard convex bodies. This bifurcation analysis is tested against exact calculations of the phase diagrams in the framework of the restricted-orientation two-dimensional model (Zwanzig model). Phase diagrams of a binary mixture of hard discorectangles are calculated through the parametrization of the orientational distribution functions. The results show not only isotropic-nematic, but also nematic-nematic demixing ending in a critical point, as well as an isotropic-nematic-nematic triple point for a mixture of hard disks and hard discorectangles.Comment: 13 pages, 14 figures. To appear in PR

    Undulation textures at the phase transitions of some alkyloxybenzoic acids

    Full text link
    We observed undulated smectic textures for some compounds of the 4,n-alkyloxybenzoic (nOBAC) acid series, at transitions between the smectic and the isotropic phase and between the smectic and nematic phase. Studied compounds were 12OBAC, 16OBAC and a binary mixture of 12- and 16OBAC. The undulations are dressing a usual Schlieren texture. In the case of the binary mixture, an interesting fingerprint pattern is observed too

    Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel

    Get PDF
    We present a density-functional study of a binary phase-separating mixture of soft core particles immersed in a random matrix of quenched soft core particles of larger size. This is a model for a binary polymer mixture immersed in a crosslinked rigid polymer network. Using the replica `trick' for quenched-annealed mixtures we derive an explicit density functional theory that treats the quenched species on the level of its one-body density distribution. The relation to a set of effective external potentials acting on the annealed components is discussed. We relate matrix-induced condensation in bulk to the behaviour of the mixture around a single large particle. The interfacial properties of the binary mixture at a surface of the quenched matrix display a rich interplay between capillary condensation inside the bulk matrix and wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.

    Quantification of metallic copper and nickel in their binary mixtures by voltammetry of immobilized microparticles

    Get PDF
    We report the use of voltammetry of immobilized microparticles for the quantification of metallic copper and nickel in their binary mixtures. Twenty-two electrolytes were investigated in order to obtain well-separated oxidation peaks. An experimental design strategy was employed to study the effect of the electrolyte concentration and the scan rate on the resolution of the oxidation peaks. With the optimum experimental parameters, a quantification was performed and the linear results of percentage of anodic currents in term of their relative amount in the binary mixture were obtained. Finally, the prediction of two mixture samples was performed and gave satisfactory results

    Transport properties of dilute gas mixtures

    Get PDF
    Transport properties of dilute binary gas mixture

    Instability in a Vlasov-Fokker-Planck binary mixture

    Full text link
    This paper is concerned with a kinetic model of a Vlasov-Fokker-Planck system used to describe the evolution of two species of particles interacting through a potential and a thermal reservoir at given temperature. We prove that at low temperature, the homogeneous equilibrium is dynamically unstable under certain perturbations. Our work is motivated by a problem arising in \cite{EGM1}

    Dynamical demixing of a binary mixture under sedimentation

    Full text link
    We investigate the sedimentation dynamics of a binary mixture, the species of which differ by their Stokes coefficients but are identical otherwise. We analyze the sedimentation dynamics and the morphology of the final deposits using Brownian dynamics simulations for mixtures with a range of sedimentation velocities of both species. We found a threshold in the sedimentation velocities difference above which the species in the final deposit are segregated. The degree of segregation increases with the difference in the Stokes coefficients or the sedimentation velocities above the threshold. We propose a simple mean-field model that captures the main features of the simulated deposits

    Fluid phase equilibria of the reacting mixture in the dimethyl carbonate synthesis from supercritical CO2

    Get PDF
    In order to investigate the dimethyl carbonate synthesis from methanol and supercritical CO2, the thermodynamic behaviour of the reacting mixture, i.e. the quaternary methanol/CO2/DMC/water mixture, has to be known. The SRK equation of state with MHV2 mixing rules has been chosen to predict fluid phase equilibria in the reactor. The first part of this work is dedicated to the determination of binary interaction parameters, needed in the use of this model. These parameters are deduced from the fitting of experimental data concerning binary or ternary sub-systems existing in the quaternary mixture. Literature data was used for most of the binary sub-systems, but for the DMC/CO2 and DMC/water mixtures, specific experiments were carried out. The agreement between experimental and predicted fluid phase equilibria was found to be satisfactory. With a view to studying of the operating conditions for the reaction, the thermodynamic model was used to predict fluid phase equilibria in the reactor, by considering several hypothetical feed ratios and conversions. This work shows that CO2 has to be used in large excess in order to be sure of running the reaction in a homogeneous fluid medium
    corecore