115,862 research outputs found

    An Integer Linear Programming Model for View Selection on Overlapping Camera Clusters

    Get PDF
    Multi-View Stereo (MVS) algorithms scale poorly on large image sets, and quickly become unfeasible to run on a single machine with limited memory. Typical solutions to lower the complexity include reducing the redundancy of the image set (view selection), and dividing the image set in groups to be processed independently (view clustering). A novel formulation for view selection is proposed here. We express the problem with an Integer Linear Programming (ILP) model, where cameras are modeled with binary variables, while the linear constraints enforce the completeness of the 3D reconstruction. The solution of the ILP leads to an optimal subset of selected cameras. As a second contribution, we integrate ILP camera selection with a view clustering approach which exploits Leveraged Affinity Propagation (LAP). LAP clustering can efficiently deal with large camera sets. We adapt the original algorithm so that it provides a set of overlapping clusters where the minimum and maximum sizes and the number of overlapping cameras can be specified. Evaluations on four different dataset show our solution provides significant complexity reductions and guarantees near-perfect coverage, making large reconstructions feasible even on a single machine

    Clustering Patients with Tensor Decomposition

    Get PDF
    In this paper we present a method for the unsupervised clustering of high-dimensional binary data, with a special focus on electronic healthcare records. We present a robust and efficient heuristic to face this problem using tensor decomposition. We present the reasons why this approach is preferable for tasks such as clustering patient records, to more commonly used distance-based methods. We run the algorithm on two datasets of healthcare records, obtaining clinically meaningful results.Comment: Presented at 2017 Machine Learning for Healthcare Conference (MLHC 2017). Boston, M

    Growing Regression Forests by Classification: Applications to Object Pose Estimation

    Full text link
    In this work, we propose a novel node splitting method for regression trees and incorporate it into the regression forest framework. Unlike traditional binary splitting, where the splitting rule is selected from a predefined set of binary splitting rules via trial-and-error, the proposed node splitting method first finds clusters of the training data which at least locally minimize the empirical loss without considering the input space. Then splitting rules which preserve the found clusters as much as possible are determined by casting the problem into a classification problem. Consequently, our new node splitting method enjoys more freedom in choosing the splitting rules, resulting in more efficient tree structures. In addition to the Euclidean target space, we present a variant which can naturally deal with a circular target space by the proper use of circular statistics. We apply the regression forest employing our node splitting to head pose estimation (Euclidean target space) and car direction estimation (circular target space) and demonstrate that the proposed method significantly outperforms state-of-the-art methods (38.5% and 22.5% error reduction respectively).Comment: Paper accepted by ECCV 201
    • …
    corecore