1 research outputs found

    An Open Problem on the Bentness of Mesnager’s Functions

    Get PDF
    Let n=2mn=2m. In the present paper, we study the binomial Boolean functions of the form fa,b(x)=Tr1n(ax2mβˆ’1)+Tr12(bx2nβˆ’13),f_{a,b}(x) = \mathrm{Tr}_1^{n}(a x^{2^m-1 }) +\mathrm{Tr}_1^{2}(bx^{\frac{2^n-1}{3} }), where mm is an even positive integer, a∈F2nβˆ—a\in \mathbb{F}_{2^n}^* and b∈F4βˆ—b\in \mathbb{F}_4^*. We show that fa,b f_{a,b} is a bent function if the Kloosterman sum Km(a2m+1)=1+βˆ‘x∈F2mβˆ—(βˆ’1)Tr1m(a2m+1x+1x)K_{m}\left(a^{2^m+1}\right)=1+ \sum_{x\in \mathbb{F}_{2^m}^*} (-1)^{\mathrm{Tr}_1^{m}(a^{2^m+1} x+ \frac{1}{x})} equals 44, thus settling an open problem of Mesnager. The proof employs tools including computing Walsh coefficients of Boolean functions via multiplicative characters, divisibility properties of Gauss sums, and graph theory
    corecore