20,643 research outputs found

    Comparison of the Representational Power of Random Forests, Binary Decision Diagrams, and Neural Networks

    Get PDF
    In this letter, we compare the representational power of random forests, binary decision diagrams (BDDs), and neural networks in terms of the number of nodes. We assume that an axis-aligned function on a single variable is assigned to each edge in random forests and BDDs, and the activation functions of neural networks are sigmoid, rectified linear unit, or similar functions. Based on existing studies, we show that for any random forest, there exists an equivalent depth-3 neural network with a linear number of nodes. We also show that for any BDD with balanced width, there exists an equivalent shallow depth neural network with a polynomial number of nodes. These results suggest that even shallow neural networks have the same or higher representation power than deep random forests and deep BDDs. We also show that in some cases, an exponential number of nodes are required to express a given random forest by a random forest with a much fewer number of trees, which suggests that many trees are required for random forests to represent some specific knowledge efficiently

    Decision diagrams in machine learning: an empirical study on real-life credit-risk data.

    Get PDF
    Decision trees are a widely used knowledge representation in machine learning. However, one of their main drawbacks is the inherent replication of isomorphic subtrees, as a result of which the produced classifiers might become too large to be comprehensible by the human experts that have to validate them. Alternatively, decision diagrams, a generalization of decision trees taking on the form of a rooted, acyclic digraph instead of a tree, have occasionally been suggested as a potentially more compact representation. Their application in machine learning has nonetheless been criticized, because the theoretical size advantages of subgraph sharing did not always directly materialize in the relatively scarce reported experiments on real-world data. Therefore, in this paper, starting from a series of rule sets extracted from three real-life credit-scoring data sets, we will empirically assess to what extent decision diagrams are able to provide a compact visual description. Furthermore, we will investigate the practical impact of finding a good attribute ordering on the achieved size savings.Advantages; Classifiers; Credit scoring; Data; Decision; Decision diagrams; Decision trees; Empirical study; Knowledge; Learning; Real life; Representation; Size; Studies;
    corecore