408 research outputs found

    Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas

    Get PDF
    <br>This paper presents a finite mixture of multivariate betas as a new model-based clustering method tailored to applications where the feature space is constrained to the unit hypercube. The mixture component densities are taken to be conditionally independent, univariate unimodal beta densities (from the subclass of reparameterized beta densities given by Bagnato and Punzo 2013). The EM algorithm used to fit this mixture is discussed in detail, and results from both this beta mixture model and the more standard Gaussian model-based clustering are presented for simulated skill mastery data from a common cognitive diagnosis model and for real data from the Assistment System online mathematics tutor (Feng et al 2009). The multivariate beta mixture appears to outperform the standard Gaussian model-based clustering approach, as would be expected on the constrained space. Fewer components are selected (by BIC-ICL) in the beta mixture than in the Gaussian mixture, and the resulting clusters seem more reasonable and interpretable.</br> <br>This article is in technical report form, the final publication is available at http://www.springerlink.com/openurl.asp?genre=article &id=doi:10.1007/s11634-013-0149-z</br&gt

    Ensemble Transport Adaptive Importance Sampling

    Full text link
    Markov chain Monte Carlo methods are a powerful and commonly used family of numerical methods for sampling from complex probability distributions. As applications of these methods increase in size and complexity, the need for efficient methods increases. In this paper, we present a particle ensemble algorithm. At each iteration, an importance sampling proposal distribution is formed using an ensemble of particles. A stratified sample is taken from this distribution and weighted under the posterior, a state-of-the-art ensemble transport resampling method is then used to create an evenly weighted sample ready for the next iteration. We demonstrate that this ensemble transport adaptive importance sampling (ETAIS) method outperforms MCMC methods with equivalent proposal distributions for low dimensional problems, and in fact shows better than linear improvements in convergence rates with respect to the number of ensemble members. We also introduce a new resampling strategy, multinomial transformation (MT), which while not as accurate as the ensemble transport resampler, is substantially less costly for large ensemble sizes, and can then be used in conjunction with ETAIS for complex problems. We also focus on how algorithmic parameters regarding the mixture proposal can be quickly tuned to optimise performance. In particular, we demonstrate this methodology's superior sampling for multimodal problems, such as those arising from inference for mixture models, and for problems with expensive likelihoods requiring the solution of a differential equation, for which speed-ups of orders of magnitude are demonstrated. Likelihood evaluations of the ensemble could be computed in a distributed manner, suggesting that this methodology is a good candidate for parallel Bayesian computations

    Analyzing the Fine Structure of Distributions

    Full text link
    One aim of data mining is the identification of interesting structures in data. For better analytical results, the basic properties of an empirical distribution, such as skewness and eventual clipping, i.e. hard limits in value ranges, need to be assessed. Of particular interest is the question of whether the data originate from one process or contain subsets related to different states of the data producing process. Data visualization tools should deliver a clear picture of the univariate probability density distribution (PDF) for each feature. Visualization tools for PDFs typically use kernel density estimates and include both the classical histogram, as well as the modern tools like ridgeline plots, bean plots and violin plots. If density estimation parameters remain in a default setting, conventional methods pose several problems when visualizing the PDF of uniform, multimodal, skewed distributions and distributions with clipped data, For that reason, a new visualization tool called the mirrored density plot (MD plot), which is specifically designed to discover interesting structures in continuous features, is proposed. The MD plot does not require adjusting any parameters of density estimation, which is what may make the use of this plot compelling particularly to non-experts. The visualization tools in question are evaluated against statistical tests with regard to typical challenges of explorative distribution analysis. The results of the evaluation are presented using bimodal Gaussian, skewed distributions and several features with already published PDFs. In an exploratory data analysis of 12 features describing quarterly financial statements, when statistical testing poses a great difficulty, only the MD plots can identify the structure of their PDFs. In sum, the MD plot outperforms the above mentioned methods.Comment: 66 pages, 81 figures, accepted in PLOS ON

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Some Bayesian methods for univariate density estimation

    Get PDF
    Density estimation is a standard tool for investigating attributes of a continuous distribution assumed to have generated a finite sample of data. Performing density estimation in a Bayesian framework allows for prior information about the underlying distribution to be used in the estimation. However, unless the size of the sample is very small, it is typically not desirable for the prior information to overwhelm information provided by the sample. Under consideration are Bayes methods for univariate density estimators on (0,1), where prior information does not dominate the outcome, and the resulting estimates are flexible and not constrained to belong to any standard parametric class of densities. The first method, referred to as DUOS, is based on a Distribution of Uniform Order Statistics prior. DUOS uses a class of step functions with a prior on the bin endpoints to allow for random bin widths and locations. The second method is called GOLD which applies a Gaussian Process on a pre-Log-Density to a class of continuous functions. A full investigation of each Bayes density estimator is presented, including the use of Markov Chain Monte Carlo to simulate from the posterior distributions, inference on the results, and extensive simulation studies establishing their competitiveness with other methods. These simulation studies also functioned as a guide to the development of defaults for the prior parameters. Finally, the package biRd in R (R Core Team (2017)) provides the functions necessary to implement both methods and completely assess the Bayesian estimates of the density, the cumulative distribution function, and a variety of statistical summaries of the density estimate
    corecore