3 research outputs found

    Constrained Planarity and Augmentation Problems

    Get PDF
    A clustered graph C=(G,T) consists of an undirected graph G and a rooted tree T in which the leaves of T correspond to the vertices of G=(V,E). Each vertex m in T corresponds to a subset of the vertices of the graph called ``cluster''. c-planarity is a natural extension of graph planarity for clustered graphs, and plays an important role in automatic graph drawing. The complexity status of c-planarity testing is unknown. It has been shown by Dahlhaus, Eades, Feng, Cohen that c-planarity can be tested in linear time for c-connected graphs, i.e., graphs in which the cluster induced subgraphs are connected. In the first part of the thesis, we provide a polynomial time algorithms for c-planarity testing of specific planar clustered graphs: Graphs for which - all nodes corresponding to the non-c-connected clusters lie on the same path in T starting at the root of T, or graphs in which for each non-connected cluster its super-cluster and all its siblings in T are connected, - for all clusters m G-G(m) is connected. The algorithms are based on the concepts for the subgraph induced planar connectivity augmentation problem, also presented in this thesis. Furthermore, we give some characterizations of c-planar clustered graphs using minors and dual graphs and introduce a c-planar augmentation method. Parts II deals with edge deletion and bimodal crossing minimization. We prove that the maximum planar subgraph problem remains NP-complete even for non-planar graphs without a minor isomorphic to either K(5) or K(3,3), respectively. Further, we investigate the problem of finding a minimum weighted set of edges whose removal results in a graph without minors that are contractible onto a prespecified set of vertices. Finally, we investigate the problem of drawing a directed graph in two dimensions with a minimal number of crossings such that for every node the incoming and outgoing edges are separated consecutively in the cyclic adjacency lists. It turns out that the planarization method can be adapted such that the number of crossings can be expected to grow only slightly for practical instances

    Interactive graph drawing with constraints

    Get PDF
    This thesis investigates the requirements for graph drawing stemming from practical applications, and presents both theoretical as well as practical results and approaches to handle them. Many approaches to compute graph layouts in various drawing styles exist, but the results are often not sufficient for use in practice. Drawing conventions, graphical notation standards, and user-defined requirements restrict the set of admissible drawings. These restrictions can be formalized as constraints for the layout computation. We investigate the requirements and give an overview and categorization of the corresponding constraints. Of main importance for the readability of a graph drawing is the number of edge crossings. In case the graph is planar it should be drawn without crossings, otherwise we should aim to use the minimum number of crossings possible. However, several types of constraints may impose restrictions on the way the graph can be embedded in the plane. These restrictions may have a strong impact on crossing minimization. For two types of such constraints we present specific solutions how to consider them in layout computation: We introduce the class of so-called embedding constraints, which restrict the order of the edges around a vertex. For embedding constraints we describe approaches for planarity testing, embedding, and edge insertion with the minimum number of crossings. These problems can be solved in linear time with our approaches. The second constraint type that we tackle are clusters. Clusters describe a hierarchical grouping of the graph's vertices that has to be reflected in the drawing. The complexity of the corresponding clustered planarity testing problem for clustered graphs is unknown so far. We describe a technique to compute a maximum clustered planar subgraph of a clustered graph. Our solution is based on an Integer Linear Program (ILP) formulation and includes also the first practical clustered planarity test for general clustered graphs. The resulting subgraph can be used within the first step of the planarization approach for clustered graphs. In addition, we describe how to improve the performance for pure clustered planarity testing by implying a branch-and-price approach. Large and complex graphs nowadays arise in many application domains. These graphs require interaction and navigation techniques to allow exploration of the underlying data. The corresponding concepts are presented and solutions for three practical applications are proposed: First, we describe Scaffold Hunter, a tool for the exploration of chemical space. We show how to use a hierarchical classification of molecules for the visual navigation in chemical space. The resulting visualization is embedded into an interactive environment that allows visual analysis of chemical compound databases. Finally, two interactive visualization approaches for two types of biological networks, protein-domain networks and residue interaction networks, are presented.In zahlreichen Anwendungsgebieten werden Informationen als Graphen modelliert und mithilfe dieser Graphen visualisiert. Eine übersichtliche Darstellung hilft bei der Analyse und unterstützt das Verständnis bei der Präsentation von Informationen mittels graph-basierter Diagramme. Neben allgemeinen ästhetischen Kriterien bestehen für eine solche Darstellung Anforderungen, die sich aus der Charakteristik der Daten, etablierten Darstellungskonventionen und der konkreten Fragestellung ergeben. Zusätzlich ist häufig eine individuelle Anpassung der Darstellung durch den Anwender gewünscht. Diese Anforderungen können mithilfe von Nebenbedingungen für die Berechnung eines Layouts formuliert werden. Trotz einer Vielzahl unterschiedlicher Anforderungen aus zahlreichen Anwendungsgebieten können die meisten Anforderungen über einige generische Nebenbedingungen formuliert werden. In dieser Arbeit untersuchen wir die Anforderungen aus der Praxis und beschreiben eine Zuordnung zu Nebenbedingungen für die Layoutberechnung. Wir geben eine Übersicht über den aktuellen Stand der Behandlung von Nebenbedingungen beim Zeichnen von Graphen und kategorisieren diese nach grundlegenden Eigenschaften. Von besonderer Wichtigkeit für die Qualität einer Darstellung ist die Anzahl der Kreuzungen. Planare Graphen sollten kreuzungsfrei gezeichnet werden, bei nicht-planaren Graphen sollte die minimale Anzahl Kreuzungen erreicht werden. Einige Nebenbedingungen beschränken jedoch die Möglichkeit, den Graph in die Ebene einzubetten. Dies kann starke Auswirkungen auf das Ergebnis der Kreuzungsminimierung haben. Zwei wichtige Typen solcher Nebenbedingungen werden in dieser Arbeit näher untersucht. Mit den Embedding Constraints führen wir eine Klasse von Nebenbedingungen ein, welche die mögliche Reihenfolge der Kanten um einen Knoten beschränken. Für diese Klasse präsentieren wir Linearzeitalgorithmen für das Testen der Planarität und das optimale Einfügen von Kanten unter Beachtung der Einbettungsbeschränkungen. Der zweite Typ von Nebenbedingungen sind Cluster, die eine hierarchische Gruppierung von Knoten vorgeben. Für das Testen der Cluster-Planarität unter solchen Nebenbedingungen ist die Komplexität bisher unbekannt. Wir beschreiben ein Verfahren, um einen maximalen Cluster-planaren Untergraphen zu berechnen. Wir nutzen dabei eine Formulierung als ganzzahliges lineares Programm sowie einen Branch-and-Cut Ansatz zur Lösung. Das Verfahren erlaubt auch die Bestimmung der Cluster-Planarität und stellt damit den ersten praktischen Ansatz zum Testen allgemeiner Clustergraphen dar. Zusätzlich beschreiben wir eine Verbesserung für den Fall, dass lediglich Cluster-Planarität getestet werden muss, der maximale Cluster-planare Untergraph aber nicht von Interesse ist. Für dieses Szenario geben wir eine vereinfachte Formulierung und präsentieren ein Lösungsverfahren, das auf einem Branch-and-Price Ansatz beruht. In der Praxis müssen häufig sehr große oder komplexe Graphen untersucht werden. Dazu werden entsprechende Interaktions- und Navigationsmethoden benötigt. Wir beschreiben die entsprechenden Konzepte und stellen Lösungen für drei Anwendungsbereiche vor: Zunächst beschreiben wir Scaffold Hunter, eine Software zur Navigation im chemischen Strukturraum. Scaffold Hunter benutzt eine hierarchische Klassifikation von Molekülen als Grundlage für die visuelle Navigation. Die Visualisierung ist eingebettet in eine interaktive Oberfläche die eine visuelle Analyse von chemischen Strukturdatenbanken erlaubt. Für zwei Typen von biologischen Netzwerken, Protein-Domänen Netzwerke und Residue-Interaktionsnetzwerke, stellen wir Ansätze für die interaktive Visualisierung dar. Die entsprechenden Layoutverfahren unterliegen einer Reihe von Nebenbedingungen für eine sinnvolle Darstellung

    Bimodal Crossing Minimization

    No full text
    We consider the problem of drawing a directed graph in two dimensions with a small or minimum number of crossings such that for every node the incoming (and hence the outgoing) edges appear consecutively in the cyclic adjacency lists. We show how to adapt the planarization method and the recently devised exact crossing minimization approach in a simple way. We report experimental results on the increase in the number of crossings involved by this additional restriction on the set of feasible drawings. It turns out that this increase is negligible for most practical instances
    corecore