546 research outputs found

    Sparse Radial Sampling LBP for Writer Identification

    Full text link
    In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.Comment: Submitted to the 13th International Conference on Document Analysis and Recognition (ICDAR 2015

    Learning to Rank for Active Learning via Multi-Task Bilevel Optimization

    Full text link
    Active learning is a promising paradigm to reduce the labeling cost by strategically requesting labels to improve model performance. However, existing active learning methods often rely on expensive acquisition function to compute, extensive modeling retraining and multiple rounds of interaction with annotators. To address these limitations, we propose a novel approach for active learning, which aims to select batches of unlabeled instances through a learned surrogate model for data acquisition. A key challenge in this approach is developing an acquisition function that generalizes well, as the history of data, which forms part of the utility function's input, grows over time. Our novel algorithmic contribution is a bilevel multi-task bilevel optimization framework that predicts the relative utility -- measured by the validation accuracy -- of different training sets, and ensures the learned acquisition function generalizes effectively. For cases where validation accuracy is expensive to evaluate, we introduce efficient interpolation-based surrogate models to estimate the utility function, reducing the evaluation cost. We demonstrate the performance of our approach through extensive experiments on standard active classification benchmarks. By employing our learned utility function, we show significant improvements over traditional techniques, paving the way for more efficient and effective utility maximization in active learning applications

    Data Distillation: A Survey

    Full text link
    The popularity of deep learning has led to the curation of a vast number of massive and multifarious datasets. Despite having close-to-human performance on individual tasks, training parameter-hungry models on large datasets poses multi-faceted problems such as (a) high model-training time; (b) slow research iteration; and (c) poor eco-sustainability. As an alternative, data distillation approaches aim to synthesize terse data summaries, which can serve as effective drop-in replacements of the original dataset for scenarios like model training, inference, architecture search, etc. In this survey, we present a formal framework for data distillation, along with providing a detailed taxonomy of existing approaches. Additionally, we cover data distillation approaches for different data modalities, namely images, graphs, and user-item interactions (recommender systems), while also identifying current challenges and future research directions.Comment: Accepted at TMLR '23. 21 pages, 4 figure

    Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

    Get PDF
    Transferability captures the ability of an attack against a machine-learning model to be effective against a different, potentially unknown, model. Empirical evidence for transferability has been shown in previous work, but the underlying reasons why an attack transfers or not are not yet well understood. In this paper, we present a comprehensive analysis aimed to investigate the transferability of both test-time evasion and training-time poisoning attacks. We provide a unifying optimization framework for evasion and poisoning attacks, and a formal definition of transferability of such attacks. We highlight two main factors contributing to attack transferability: the intrinsic adversarial vulnerability of the target model, and the complexity of the surrogate model used to optimize the attack. Based on these insights, we define three metrics that impact an attack's transferability. Interestingly, our results derived from theoretical analysis hold for both evasion and poisoning attacks, and are confirmed experimentally using a wide range of linear and non-linear classifiers and datasets

    Large-scale Dataset Pruning with Dynamic Uncertainty

    Full text link
    The state of the art of many learning tasks, e.g., image classification, is advanced by collecting larger datasets and then training larger models on them. As the outcome, the increasing computational cost is becoming unaffordable. In this paper, we investigate how to prune the large-scale datasets, and thus produce an informative subset for training sophisticated deep models with negligible performance drop. We propose a simple yet effective dataset pruning method by exploring both the prediction uncertainty and training dynamics. To our knowledge, this is the first work to study dataset pruning on large-scale datasets, i.e., ImageNet-1K and ImageNet-21K, and advanced models, i.e., Swin Transformer and ConvNeXt. Extensive experimental results indicate that our method outperforms the state of the art and achieves 75% lossless compression ratio on both ImageNet-1K and ImageNet-21K. The code and pruned datasets are available at https://github.com/BAAI-DCAI/Dataset-Pruning

    Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning

    Get PDF
    Learning-based pattern classifiers, including deep networks, have shown impressive performance in several application domains, ranging from computer vision to cybersecurity. However, it has also been shown that adversarial input perturbations carefully crafted either at training or at test time can easily subvert their predictions. The vulnerability of machine learning to such wild patterns (also referred to as adversarial examples), along with the design of suitable countermeasures, have been investigated in the research field of adversarial machine learning. In this work, we provide a thorough overview of the evolution of this research area over the last ten years and beyond, starting from pioneering, earlier work on the security of non-deep learning algorithms up to more recent work aimed to understand the security properties of deep learning algorithms, in the context of computer vision and cybersecurity tasks. We report interesting connections between these apparently-different lines of work, highlighting common misconceptions related to the security evaluation of machine-learning algorithms. We review the main threat models and attacks defined to this end, and discuss the main limitations of current work, along with the corresponding future challenges towards the design of more secure learning algorithms.Comment: Accepted for publication on Pattern Recognition, 201

    Algorithmic Foundations of Empirical X-risk Minimization

    Full text link
    This manuscript introduces a new optimization framework for machine learning and AI, named {\bf empirical X-risk minimization (EXM)}. X-risk is a term introduced to represent a family of compositional measures or objectives, in which each data point is compared with a large number of items explicitly or implicitly for defining a risk function. It includes surrogate objectives of many widely used measures and non-decomposable losses, e.g., AUROC, AUPRC, partial AUROC, NDCG, MAP, precision/recall at top KK positions, precision at a certain recall level, listwise losses, p-norm push, top push, global contrastive losses, etc. While these non-decomposable objectives and their optimization algorithms have been studied in the literature of machine learning, computer vision, information retrieval, and etc, optimizing these objectives has encountered some unique challenges for deep learning. In this paper, we present recent rigorous efforts for EXM with a focus on its algorithmic foundations and its applications. We introduce a class of algorithmic techniques for solving EXM with smooth non-convex objectives. We formulate EXM into three special families of non-convex optimization problems belonging to non-convex compositional optimization, non-convex min-max optimization and non-convex bilevel optimization, respectively. For each family of problems, we present some strong baseline algorithms and their complexities, which will motivate further research for improving the existing results. Discussions about the presented results and future studies are given at the end. Efficient algorithms for optimizing a variety of X-risks are implemented in the LibAUC library at \url{www.libauc.org}
    corecore