5 research outputs found

    Analysis and prediction of jitter of internet one-way time-delay for teleoperation systems

    Full text link

    Bilateral control of nonlinear teleoperation with time varying communication delays

    Get PDF
    This paper addresses the bilateral control of nonlinear teleoperation with time varying communication delays. The proposed methods are two types of simple PD-type controllers which consists of D-controls depending on (the upper bound of) the rate of change of delay and P-controls depending on the upper bound of round-trip delay. Using Lyapunov-Krasovskii function, the delay-dependent stability of the origin is shown for the ranges of gains. Furthermore the proposed strategies also achieve master-slave position coordination and bilateral static force reflection. Several experimental results show the effectiveness of our proposed methods. ©2008 AACC

    Force-Reflecting Bilateral Teleoperation Through the Internet.

    No full text

    Teleoperation Data Transport over IP networks. Bidirectionality and efficiency

    Get PDF
    [EN] The article proposes a new transport scheme for teleoperation data flows via the Internet. An overall analysis of bilateral teleoperation data, encapsulated in IP packets are maded. The analysis distinguish between multimedia traffic, supermedia traffic and control traffic, and allows for TCPFriendly flow control systems. It presents simulation results and comparisons with other transport schemes, using the trinomial flow control algorithm, but other flow control methods are possible. The proposed scheme takes advantage of the bidirectionality of the control loop and the small size of the teleoperation data, to improve the efficiency of the transmission; it aims to serve as network contribution to the stability control efforts of teleoperation systems with variable delays. The proposed scheme presents a conformant transport header to equation-based flow control protocol, while maintaining efficiency, and provides some uses of certain IP header fields.[ES] Este artículo propone un nuevo esquema de protocolo de transporte que aprovecha las particularidades de flujos de datos de teleoperación a través de Internet. Se presenta como resultado de un análisis global de los datos de la teleoperación bilateral para ser encapsulados en paquetes compatibles IP. Distingue entre tráfico multimedia, tráfico supermedia y tráfico de control, y ofrece la posibilidad de sistemas de control del flujo que sean amigables con el tráfico TCP (TCPFriendly) mayoritario en Internet. Se presentan resultados de simulación y comparaciones con otros esquemas, utilizando el sistema de control del flujo trinomial, pero son posibles otros sistemas de control. El esquema propuesto aprovecha la bidireccionalidad del lazo de control y el pequeño tamaño de los datos de teleoperación para la mejora de la eficiencia de la transmisión manteniendo la misma información a enviar, y pretende servir de aportación por parte de la red, a los esfuerzos de modelar la estabilidad de sistemas de teleoperación a través de redes con retardos variables mediante las actuaciones sobre los controladores Maestro y Esclavo. En el artículo se presenta una cabecera de transporte adecuada a los sistemas de control del flujo basados en ecuación (Equation-Based Flow Control), manteniendo la eficiencia, y establece unos usos de determinados campos de la cabecera actual de Internet.Este trabajo ha sido realizado parcialmente gracias al apoyo del Ministerio de Ciencia y Tecnología de España en el marco de los proyectos CICYT DPI2007-66455-C02-02 y DPI2008-06738-C02-03. Además ha recibido el apoyo de la Consellería de Innovación e Industria de la Xunta de Galicia en el mismo país, en el marco del Proyecto 08DPI-011303PR.Díaz-Cacho, M.; Barreiro, A.; García, M. (2010). Bidireccionalidad y Eficiencia en el Transporte de Datos de Teleoperación a Través de Redes IP. Revista Iberoamericana de Automática e Informática industrial. 7(2):99-110. https://doi.org/10.1016/S1697-7912(10)70030-3OJS9911072Andersen, D., Balakrishnan, H., Kaashoek, F., & Morris, R. (2001). Resilient overlay networks. ACM SIGOPS Operating Systems Review, 35(5), 131-145. doi:10.1145/502059.502048Anderson, R. J., & Spong, M. W. (s. f.). Bilateral control of teleoperators with time delay. Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics. doi:10.1109/icsmc.1988.754257Arkko, J. and S. Bradner (2008). IANA Allocation Guidelines for the Protocol Field. RFC 5237.(Best Current Practice).Berestesky, P., Chopra, N., & Spong, M. W. (2004). Discrete time passivity in bilateral teleoperation over the Internet. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004. doi:10.1109/robot.2004.1302436Decotignie, J.-D. (2005). Ethernet-Based Real-Time and Industrial Communications. Proceedings of the IEEE, 93(6), 1102-1117. doi:10.1109/jproc.2005.849721Diaz-Cacho, M., A. Fernandez and A. Barreiro (2008). Sistema de teleoperacion colaborativa grua-camara con retorno de. estado.; Website. http://www.cea-ifac.es/actividades/jornadas/XXIX/pdf/271.pdf.Zhenhai Duan, Zhi-Li Zhang, & Yiwei Thomas Hou. (2003). Service overlay networks: slas, qos, and bandwidth provisioning. IEEE/ACM Transactions on Networking, 11(6), 870-883. doi:10.1109/tnet.2003.820436Slawiñski, E., Postigo, J. F., & Mut, V. (2007). Bilateral teleoperation through the Internet. Robotics and Autonomous Systems, 55(3), 205-215. doi:10.1016/j.robot.2006.09.002Felser, M. (2005). Real-Time Ethernet - Industry Prospective. Proceedings of the IEEE, 93(6), 1118-1129. doi:10.1109/jproc.2005.849720Floyd, S., & Fall, K. (1999). Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM Transactions on Networking, 7(4), 458-472. doi:10.1109/90.793002Floyd, S., Handley, M., Padhye, J., & Widmer, J. (2000). Equation-based congestion control for unicast applications. ACM SIGCOMM Computer Communication Review, 30(4), 43-56. doi:10.1145/347057.347397García-Rivera, M., & Barreiro, A. (2007). Analysis of networked control systems with drops and variable delays. Automatica, 43(12), 2054-2059. doi:10.1016/j.automatica.2007.03.027Jacobson, V. (1995). Congestion avoidance and control. ACM SIGCOMM Computer Communication Review, 25(1), 157-187. doi:10.1145/205447.205462Kohler, Eddie, Mark Handley and Sally Floyd (2006b). Designing dccp: congestión control without reliability. In: SIG-COMM ‘06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer Communications. ACM. New York, NY, USA. pp. 27–38.Li, Z., & Mohapatra, P. (2004). QRON: QoS-Aware Routing in Overlay Networks. IEEE Journal on Selected Areas in Communications, 22(1), 29-40. doi:10.1109/jsac.2003.818782Feng-Li Lian, Moyne, J., & Tilbury, D. (2002). Network design consideration for distributed control systems. IEEE Transactions on Control Systems Technology, 10(2), 297-307. doi:10.1109/87.987076Liu, P. X., Meng, M. Q.-H., & Yang, S. X. (2003). Autonomous Robots, 15(3), 213-223. doi:10.1023/a:1026160302776Liu, P. X., Meng, M. Q.-H., Liu, P. R., & Yang, S. X. (2005). An End-to-End Transmission Architecture for the Remote Control of Robots Over IP Networks. IEEE/ASME Transactions on Mechatronics, 10(5), 560-570. doi:10.1109/tmech.2005.856110Niemeyer, G., & Slotine, J.-J. E. (1991). Stable adaptive teleoperation. IEEE Journal of Oceanic Engineering, 16(1), 152-162. doi:10.1109/48.64895Ping Li, Wenjuan Lu, & Zengqi Sun. (s. f.). Transport layer protocol reconfiguration for network-based robot control system. Proceedings. 2005 IEEE Networking, Sensing and Control, 2005. doi:10.1109/icnsc.2005.1461342Schiffer, V. (s. f.). The CIP family of fieldbus protocols and its newest member - Ethernet/IP. ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597). doi:10.1109/etfa.2001.996391Tipsuwan, Y., & Chow, M.-Y. (2004). Gain Scheduler Middleware: A Methodology to Enable Existing Controllers for Networked Control and Teleoperation—Part I: Networked Control. IEEE Transactions on Industrial Electronics, 51(6), 1218-1227. doi:10.1109/tie.2004.837866Uchimura, Y., & Yakoh, T. (2004). Bilateral Robot System on the Real-Time Network Structure. IEEE Transactions on Industrial Electronics, 51(5), 940-946. doi:10.1109/tie.2004.834942Wirz, R., Marin, R., Claver, J. M., Fernandez, J., & Cervera, E. (2007). Transport Protocols for Remote Programming of Network Robots within the context of Telelaboratories for Education: A Comparative Analysis. 2007 16th International Conference on Computer Communications and Networks. doi:10.1109/icccn.2007.4318003Wirz, R., Marín, R., Claver, J. M., Ferre, M., Aracil, R., & Fernández, J. (2008). End-to-end congestion control protocols for remote programming of robots, using heterogeneous networks: A comparative analysis. Robotics and Autonomous Systems, 56(10), 865-874. doi:10.1016/j.robot.2008.06.005Uchimura, Y., Yamasaki, N., & Ohnishi, K. (2005). Prioritized Data Transfer for a Bilateral Robot Control via Real-Time Network System. IEEJ Transactions on Industry Applications, 125(2), 199-204. doi:10.1541/ieejias.125.199Zhou, Y., Meng, M., Liang, H., Sun, L., Xu, Z., & Shen, K. (2006). TFRC-PROBE: A Transport Protocol for Teleoperation Systems of Mobile Robots. 2006 IEEE International Conference on Information Acquisition. doi:10.1109/icia.2006.30597
    corecore