2 research outputs found

    Empirical Analysis of Privacy Preservation Models for Cyber Physical Deployments from a Pragmatic Perspective

    Get PDF
    The difficulty of privacy protection in cyber-physical installations encompasses several sectors and calls for methods like encryption, hashing, secure routing, obfuscation, and data exchange, among others. To create a privacy preservation model for cyber physical deployments, it is advised that data privacy, location privacy, temporal privacy, node privacy, route privacy, and other types of privacy be taken into account. Consideration must also be given to other types of privacy, such as temporal privacy. The computationally challenging process of incorporating these models into any wireless network also affects quality of service (QoS) variables including end-to-end latency, throughput, energy use, and packet delivery ratio. The best privacy models must be used by network designers and should have the least negative influence on these quality-of-service characteristics. The designers used common privacy models for the goal of protecting cyber-physical infrastructure in order to achieve this. The limitations of these installations' interconnection and interface-ability are not taken into account in this. As a result, even while network security has increased, the network's overall quality of service has dropped. The many state-of-the-art methods for preserving privacy in cyber-physical deployments without compromising their performance in terms of quality of service are examined and analyzed in this research. Lowering the likelihood that such circumstances might arise is the aim of this investigation and review. These models are rated according to how much privacy they provide, how long it takes from start to finish to transfer data, how much energy they use, and how fast their networks are. In order to maximize privacy while maintaining a high degree of service performance, the comparison will assist network designers and researchers in selecting the optimal models for their particular deployments. Additionally, the author of this book offers a variety of tactics that, when used together, might improve each reader's performance. This study also provides a range of tried-and-true machine learning approaches that networks may take into account and examine in order to enhance their privacy performance

    Bilateral privacy-preserving utility maximization protocol in database-driven cognitive radio networks

    No full text
    Database-driven cognitive radio has been well recognized as an efficient way to reduce interference between Primary Users (PUs) and Secondary Users (SUs).In database-driven cognitive radio, PUs and SUs must provide their locations to enable dynamic channel allocation, which raises location privacy breach concern. Previous studies only focus on unilateral privacy preservation, i.e., only PUs’ or SUs’ privacy is preserved. In this paper, we propose to protect bilateral location privacy of PUs and SUs. The main challenge lies in how to coordinate PUs and SUs to maximize their utilities provided that their location privacy is protected. We first introduce a quantitative method to calculate both PUs’ and SUs’ location privacy, and then design a novel privacy preserving Utility Maximization protocol (UMax). UMax allows for both PUs and SUs to adjust their privacy preserving levels and optimize transmit power iteratively to achieve the maximum utilities. Through extensive evaluations, we demonstrate that our proposed protocol can efficiently increase the utilities of both PUs and SUs while preserving their location privacy
    corecore