49,237 research outputs found

    GraphH: High Performance Big Graph Analytics in Small Clusters

    Full text link
    It is common for real-world applications to analyze big graphs using distributed graph processing systems. Popular in-memory systems require an enormous amount of resources to handle big graphs. While several out-of-core approaches have been proposed for processing big graphs on disk, the high disk I/O overhead could significantly reduce performance. In this paper, we propose GraphH to enable high-performance big graph analytics in small clusters. Specifically, we design a two-stage graph partition scheme to evenly divide the input graph into partitions, and propose a GAB (Gather-Apply-Broadcast) computation model to make each worker process a partition in memory at a time. We use an edge cache mechanism to reduce the disk I/O overhead, and design a hybrid strategy to improve the communication performance. GraphH can efficiently process big graphs in small clusters or even a single commodity server. Extensive evaluations have shown that GraphH could be up to 7.8x faster compared to popular in-memory systems, such as Pregel+ and PowerGraph when processing generic graphs, and more than 100x faster than recently proposed out-of-core systems, such as GraphD and Chaos when processing big graphs

    Pregelix: Big(ger) Graph Analytics on A Dataflow Engine

    Full text link
    There is a growing need for distributed graph processing systems that are capable of gracefully scaling to very large graph datasets. Unfortunately, this challenge has not been easily met due to the intense memory pressure imposed by process-centric, message passing designs that many graph processing systems follow. Pregelix is a new open source distributed graph processing system that is based on an iterative dataflow design that is better tuned to handle both in-memory and out-of-core workloads. As such, Pregelix offers improved performance characteristics and scaling properties over current open source systems (e.g., we have seen up to 15x speedup compared to Apache Giraph and up to 35x speedup compared to distributed GraphLab), and makes more effective use of available machine resources to support Big(ger) Graph Analytics

    Scalable big data systems: Architectures and optimizations

    Get PDF
    Big data analytics has become not just a popular buzzword but also a strategic direction in information technology for many enterprises and government organizations. Even though many new computing and storage systems have been developed for big data analytics, scalable big data processing has become more and more challenging as a result of the huge and rapidly growing size of real-world data. Dedicated to the development of architectures and optimization techniques for scaling big data processing systems, especially in the era of cloud computing, this dissertation makes three unique contributions. First, it introduces a suite of graph partitioning algorithms that can run much faster than existing data distribution methods and inherently scale to the growth of big data. The main idea of these approaches is to partition a big graph by preserving the core computational data structure as much as possible to maximize intra-server computation and minimize inter-server communication. In addition, it proposes a distributed iterative graph computation framework that effectively utilizes secondary storage to maximize access locality and speed up distributed iterative graph computations. The framework not only considerably reduces memory requirements for iterative graph algorithms but also significantly improves the performance of iterative graph computations. Last but not the least, it establishes a suite of optimization techniques for scalable spatial data processing along with three orthogonal dimensions: (i) scalable processing of spatial alarms for mobile users traveling on road networks, (ii) scalable location tagging for improving the quality of Twitter data analytics and prediction accuracy, and (iii) lightweight spatial indexing for enhancing the performance of big spatial data queries.Ph.D

    Ringo: Interactive Graph Analytics on Big-Memory Machines

    Full text link
    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.Comment: 6 pages, 2 figure

    GraphMP: An Efficient Semi-External-Memory Big Graph Processing System on a Single Machine

    Full text link
    Recent studies showed that single-machine graph processing systems can be as highly competitive as cluster-based approaches on large-scale problems. While several out-of-core graph processing systems and computation models have been proposed, the high disk I/O overhead could significantly reduce performance in many practical cases. In this paper, we propose GraphMP to tackle big graph analytics on a single machine. GraphMP achieves low disk I/O overhead with three techniques. First, we design a vertex-centric sliding window (VSW) computation model to avoid reading and writing vertices on disk. Second, we propose a selective scheduling method to skip loading and processing unnecessary edge shards on disk. Third, we use a compressed edge cache mechanism to fully utilize the available memory of a machine to reduce the amount of disk accesses for edges. Extensive evaluations have shown that GraphMP could outperform state-of-the-art systems such as GraphChi, X-Stream and GridGraph by 31.6x, 54.5x and 23.1x respectively, when running popular graph applications on a billion-vertex graph
    • …
    corecore