18,500 research outputs found

    Climate change and disaster impact reduction

    Get PDF
    Based on papers presented at the 'UK - South Asia Young Scientists and Practitioners Seminar on Climate Change and Disaster Impact Reduction' held at Kathmandu, Nepal on 5-6 June, 2008

    Advances in Remote Sensing-based Disaster Monitoring and Assessment

    Get PDF
    Remote sensing data and techniques have been widely used for disaster monitoring and assessment. In particular, recent advances in sensor technologies and artificial intelligence-based modeling are very promising for disaster monitoring and readying responses aimed at reducing the damage caused by disasters. This book contains eleven scientific papers that have studied novel approaches applied to a range of natural disasters such as forest fire, urban land subsidence, flood, and tropical cyclones

    Multidimensional analysis of nexus technologies II: dynamics of traditional and modern irrigation systems

    Get PDF
    From a technological perspective, irrigation is a dynamic field undergoing a shift from a horizontal expansion of the area equipped for irrigation (or “total irrigation market”) to a vertical transition of the technology mix in search of higher intensification and efficiency (more crop per drop). As a result, the “irrigation market” is currently experiencing a gradual transformation process from traditional flood irrigation towards more efficient pressurised irrigation technologies (sprinkler and drip). The results of this study suggest that these substitution dynamics will continue in the future, favouring the most recent and efficient technology, i.e. drip irrigation. A logistic projection of historical growth predicts drip to reach the highest growth rate among all technologies by 2035, and start a fast expansion over not only flood irrigated areas, but also sprinkler irrigated areas. The cost and size dynamics of irrigation projects are less clear given the extremely high context dependency and variability of some critical factors determining irrigation project costs, as well as the important differences across regions. Economies of scale also vary across regions, and are estimated to be higher for rehabilitation and modernization projects than for new development projects, with scale factors of 0.6 and 0.97 respectively. Regarding the learning effects, the limitations in data quality and completeness do not allow to derive clear quantitative and technology specific estimates of learning trends. Nevertheless, some positive learning is detected in rehabilitation projects since 1990 and certain cost reductions at the application technology level are reported by consulted irrigation technology experts. Focusing on the regions of interest for ISWEL case studies, South Asia may see a rapid expansion of drip irrigation through both private modernization initiatives at the small-medium scale and public large scale rehabilitation-modernization interventions on historical surface schemes. Thanks to the active local irrigation technology industry and off farm infrastructure stock, irrigation technology costs will remain lower than in other areas and could be subject for learning related cost reductions in the future. Meanwhile, projects in Africa may develop in the line of expanding the irrigation potential through mainly medium-large scale surface irrigation schemes. The costs of these new schemes are expected to be on the high edge of historical average ranges, due to the increasing complexity of suitable locations and thus of the systems offsetting the potential effects of economies of scale brought about by an increase in project size compared to the historical interventions. Meanwhile, sprinkler technology and particularly centre pivot seems to be a suitable option already expanding within the emerging commercial farming, due to the lower costs and the potential for technology sharing

    Adaptive management of Ramsar wetlands

    Get PDF
    Abstract The Macquarie Marshes are one of Australia’s iconic wetlands, recognised for their international importance, providing habitat for some of the continent’s more important waterbird breeding sites as well as complex and extensive flood-dependent vegetation communities. Part of the area is recognised as a wetland of international importance, under the Ramsar Convention. River regulation has affected their resilience, which may increase with climate change. Counteracting these impacts, the increased amount of environmental flow provided to the wetland through the buy-back and increased wildlife allocation have redressed some of the impacts of river regulation. This project assists in the development of an adaptive management framework for this Ramsar-listed wetland. It brings together current management and available science to provide an informed hierarchy of objectives that incorporates climate change adaptation and assists transparent management. The project adopts a generic approach allowing the framework to be transferred to other wetlands, including Ramsar-listed wetlands, supplied by rivers ranging from highly regulated to free flowing. The integration of management with science allows key indicators to be monitored that will inform management and promote increasingly informed decisions. The project involved a multi-disciplinary team of scientists and managers working on one of the more difficult challenges for Australia, exacerbated by increasing impacts of climate change on flows and inundation patterns
    • 

    corecore