9,635 research outputs found

    Orchestration of machine learning workflows on Internet of Things data

    Get PDF
    Applications empowered by machine learning (ML) and the Internet of Things (IoT) are changing the way people live and impacting a broad range of industries. However, creating and automating ML workflows at scale using real-world IoT data often leads to complex systems integration and production issues. Examples of challenges faced during the development of these ML applications include glue code, hidden dependencies, and data pipeline jungles. This research proposes the Machine Learning Framework for IoT data (ML4IoT), which is designed to orchestrate ML workflows to perform training and enable inference by ML models on IoT data. In the proposed framework, containerized microservices are used to automate the execution of tasks specified in ML workflows, which are defined through REST APIs. To address the problem of integrating big data tools and machine learning into a unified platform, the proposed framework enables the definition and execution of end-to-end ML workflows on large volumes of IoT data. In addition, to address the challenges of running multiple ML workflows in parallel, the ML4IoT has been designed to use container-based components that provide a convenient mechanism to enable the training and deployment of numerous ML models in parallel. Finally, to address the common production issues faced during the development of ML applications, the proposed framework used microservices architecture to bring flexibility, reusability, and extensibility to the framework. Through the experiments, we demonstrated the feasibility of the (ML4IoT), which managed to train and deploy predictive ML models in two types of IoT data. The obtained results suggested that the proposed framework can manage real-world IoT data, by providing elasticity to execute 32 ML workflows in parallel, which were used to train 128 ML models simultaneously. Also, results demonstrated that in the ML4IoT, the performance of rendering online predictions is not affected when 64 ML models are deployed concurrently to infer new information using online IoT data

    A Radio-fingerprinting-based Vehicle Classification System for Intelligent Traffic Control in Smart Cities

    Full text link
    The measurement and provision of precise and upto-date traffic-related key performance indicators is a key element and crucial factor for intelligent traffic controls systems in upcoming smart cities. The street network is considered as a highly-dynamic Cyber Physical System (CPS) where measured information forms the foundation for dynamic control methods aiming to optimize the overall system state. Apart from global system parameters like traffic flow and density, specific data such as velocity of individual vehicles as well as vehicle type information can be leveraged for highly sophisticated traffic control methods like dynamic type-specific lane assignments. Consequently, solutions for acquiring these kinds of information are required and have to comply with strict requirements ranging from accuracy over cost-efficiency to privacy preservation. In this paper, we present a system for classifying vehicles based on their radio-fingerprint. In contrast to other approaches, the proposed system is able to provide real-time capable and precise vehicle classification as well as cost-efficient installation and maintenance, privacy preservation and weather independence. The system performance in terms of accuracy and resource-efficiency is evaluated in the field using comprehensive measurements. Using a machine learning based approach, the resulting success ratio for classifying cars and trucks is above 99%

    Big data reduction framework for value creation in sustainable enterprises

    No full text
    Value creation is a major sustainability factor for enterprises, in addition to profit maximization and revenue generation. Modern enterprises collect big data from various inbound and outbound data sources. The inbound data sources handle data generated from the results of business operations, such as manufacturing, supply chain management, marketing, and human resource management, among others. Outbound data sources handle customer-generated data which are acquired directly or indirectly from customers, market analysis, surveys, product reviews, and transactional histories. However, cloud service utilization costs increase because of big data analytics and value creation activities for enterprises and customers. This article presents a novel concept of big data reduction at the customer end in which early data reduction operations are performed to achieve multiple objectives, such as a) lowering the service utilization cost, b) enhancing the trust between customers and enterprises, c) preserving privacy of customers, d) enabling secure data sharing, and e) delegating data sharing control to customers. We also propose a framework for early data reduction at customer end and present a business model for end-to-end data reduction in enterprise applications. The article further presents a business model canvas and maps the future application areas with its nine components. Finally, the article discusses the technology adoption challenges for value creation through big data reduction in enterprise applications
    • …
    corecore