
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-24-2019 10:30 AM

Orchestration of machine learning workflows on Internet of Orchestration of machine learning workflows on Internet of

Things data Things data

Jose Miguel Alves
The University of Western Ontario

Supervisor

Dr. Miriam A. M. Capretz

The University of Western Ontario

Graduate Program in Electrical and Computer Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of

Engineering Science

© Jose Miguel Alves 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Alves, Jose Miguel, "Orchestration of machine learning workflows on Internet of Things data" (2019).
Electronic Thesis and Dissertation Repository. 6150.
https://ir.lib.uwo.ca/etd/6150

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6150?utm_source=ir.lib.uwo.ca%2Fetd%2F6150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Applications empowered by machine learning (ML) and the Internet of Things (IoT) are

changing the way people live and impacting a broad range of industries. However, creating and

automating ML workflows at scale using real-world IoT data often leads to complex systems

integration and production issues. Examples of challenges faced during the development of

these ML applications include glue code, hidden dependencies, and data pipeline jungles.

This research proposes the Machine Learning Framework for IoT data (ML4IoT), which is

designed to orchestrate ML workflows to perform training and enable inference by ML models

on IoT data. In the proposed framework, containerized microservices are used to automate the

execution of tasks specified in ML workflows, which are defined through REST APIs.

To address the problem of integrating big data tools and machine learning into a unified

platform, the proposed framework enables the definition and execution of end-to-end ML

workflows on large volumes of IoT data. In addition, to address the challenges of running

multiple ML workflows in parallel, the ML4IoT has been designed to use container-based

components that provide a convenient mechanism to enable the training and deployment of

numerous ML models in parallel. Finally, to address the common production issues faced during

the development of ML applications, the proposed framework used microservices architecture

to bring flexibility, reusability, and extensibility to the framework.

Through the experiments, we demonstrated the feasibility of the (ML4IoT), which managed

to train and deploy predictive ML models in two types of IoT data. The obtained results

suggested that the proposed framework can manage real-world IoT data, by providing elasticity

to execute 32 ML workflows in parallel, which were used to train 128 ML models simultaneously.

Also, results demonstrated that in the ML4IoT, the performance of rendering online predictions

is not affected when 64 ML models are deployed concurrently to infer new information using

online IoT data.

Keywords: IoT, Machine Learning, Big Data, Machine Learning Workflow Automation,

Orchestration, Time-series Forecasting, Container-based Virtualization, Microservices

ii

Acknowledgements

First, I would like to thank my supervisor, Dr. Miriam Capretz. Dr. Capretz believed in my

potential and gave me the opportunity to study under her guidance. I will always be thankful

for the opportunities she gave me and for entrusting me with the freedom to pursue my own

research interests.

This thesis would also not have been possible without the support of my wife, Carla Alves,

who left everything behind to join me in this challenge. Thank you for being with me and for

guiding me during these years. I love you.

Infinite thanks to my mother, Vilma Alves. Thank you for your hard work to support our

family. Thanks to my sisters, my friends, my niece Isabella, and my nephew Antenor, who have

provided me with numerous moments of laughter and joy.

I would also like to extend my heartfelt appreciation to my fantastic research team for helping

me throughout my research: Wander Queiroz, Norman Tasfi, Willamos Aguiar, Alexandra

LHeureux, and Santiago Gomez. Special thanks to Dr. Hany ElYamany and Dr. Mahmoud

ElGayyar for lending their expertise to my research and for all the time they spent helping me.

Thank you.

Lastly, I would also like to thank members of the industry I worked in the past, especially

Icaro Technologies. Thank you for giving me a chance to work with an outstanding team who

inspired me to pursue my dreams and accept new challenges.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

List of Listings x

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 3

1.3 Organization of the Thesis . 5

2 Background and Literature Review 7

2.1 Background . 7

2.1.1 Internet of Things . 7

2.1.2 Machine Learning . 9

2.1.3 Time-series Forecasting . 16

2.1.4 Microservices . 17

2.1.5 Container-based Virtualization . 18

2.2 Literature Review . 19

2.2.1 Machine Learning Platforms . 19

iv

2.2.2 Data Processing Frameworks . 21

2.2.3 Big Data and Machine Learning in IoT 22

2.3 Summary . 25

3 ML4IoT Framework 26

3.1 Introduction . 26

3.2 ML4IoT Components . 28

3.2.1 ML4IoT User Interface . 29

3.2.2 ML4IoT Core . 32

3.2.3 ML4IoT Data Management . 43

3.3 ML4IoT Design . 44

3.3.1 Batch ML Workflow Orchestration . 45

3.3.2 Online ML Workflow Orchestration 47

3.4 Summary . 50

4 Evaluation 51

4.1 Implementation Details . 51

4.2 IoT Data . 52

4.2.1 Energy Data . 53

4.2.2 Traffic Data . 54

4.3 Experimental Setup . 55

4.4 Machine Learning Orchestration Evaluation 56

4.4.1 Experiment . 56

4.4.2 Results and Discussion . 60

4.5 Elasticity Evaluation . 64

4.5.1 Results and Discussion . 64

4.6 Performance Evaluation . 68

4.6.1 Results and Discussion . 69

v

4.7 Summary . 71

5 Conclusions and Future Work 72

5.1 Conclusions . 72

5.2 Future Work . 74

Bibliography 76

Curriculum Vitae 89

vi

List of Figures

2.1 Random Forest structure [1]. 13

2.2 Long Short-Term Memory Neuron [2]. 14

2.3 Example of a generic machine learning workflow/pipeline. 15

2.4 Time-series forecasting strategies and their relationship [3]. 16

2.5 Comparison of virtualization architectures: hypervisor-based versus container-

based [4]. 18

3.1 Machine Learning Framework for IoT data - ML4IoT. 27

3.2 Prototype of the ML4IoT User Interface. 29

3.3 Steps performed during the creation of batch ML workflows. 30

3.4 Steps performed during the creation of online ML workflows. 31

3.5 Conceptual data model for the ML4IoT. 34

3.6 Orchestration steps of batch ML workflows. 37

3.7 Orchestration steps of online ML workflows. 37

3.8 Simplified lifecycle of a Docker Container. 42

3.9 Sequence diagram: execution of batch ML workflows. 46

3.10 Sequence diagram: execution of online ML workflows. 49

4.1 Average rate of IoT data ingestion. 56

4.2 Results of RF models predicting traffic data. 62

4.3 Results of LSTM models predicting traffic data. 62

4.4 Results of RF models predicting energy data. 63

4.5 Results of LSTM models predicting energy data. 63

vii

4.6 Workload 1 - Containers, CPU and memory allocation during parallel training

of 16 ML models. 66

4.7 Workload 2 - Containers, CPU and memory allocation during parallel training

of 32 ML models. 66

4.8 Workload 3 - Containers, CPU and memory allocation during parallel training

of 64 ML models. 67

4.9 Workload 4 - Containers, CPU and memory allocation during parallel training

of 128 ML models. 67

4.10 Latency of online ML workflows in different workloads. 70

4.11 Latency time of model inference step during the execution of online ML workflows. 70

viii

List of Tables

2.1 Comparison between ML4IoT and existing platforms. 21

4.1 Containers images and services implemented in each image. 52

4.2 Features and description of the energy data. 54

4.3 Features and description of the traffic data. 55

4.4 Hardware environment used in the experiments. 55

4.5 Clusters configuration of big data tools used in the prototye system. 56

4.6 Minutes ahead defined in each batch ML workflow. 57

4.7 Description of the energy and traffic datasets. 57

4.8 Prediction accuracy of ML models rendering prediction using online IoT data. . 61

4.9 Description of workloads used in the elasticity evaluation. 65

4.10 Description of workloads used in the performance evaluation. 69

ix

Listings

3.1 Batch ML workflow represented in a JSON file. 36

3.2 Example of a Dockerfile that is used to define Docker images. 40

4.1 Sample of IoT energy raw data. 53

4.2 Sample of IoT traffic raw data. 54

x

Chapter 1

Introduction

1.1 Motivation

Gartner [5], predicts that the Internet of Things (IoT) will reach 26 billion internet-connected

devices by 2020, impacting a wide range of industries. The Internet of Things (IoT) is about

connecting any device to the Internet, enabling the digitization of devices, vehicles, and other

elements of the real world. Machine learning (ML) has been increasingly used with IoT data to

create new applications, such as smart cities [6], smart homes [7], and smart grids [8].

Machine Learning is an approach used to convert data into applications by obtaining models

that generalize to new data [9]. In real-world IoT applications, ML development is divided into

two phases: training and inference. The training phase typically begins with ingestion, storage,

and preprocessing of IoT data. After this, ML models are trained using the preprocessed IoT

data. The inference phase is also referred to in the literature as prediction serving, model score,

or model prediction [9]. In IoT scenarios, the inference phase involves the deployment of trained

ML models to infer information using online IoT data that were not used previously to train the

models.

IoT devices produce massive amounts of data, at high speed, and from a vast variety of

sources [10]. The high volume, high velocity, and high variety of the data require the use of

1

2 Chapter 1. Introduction

several Big Data-enabling tools to ingest, store, and preprocess the IoT data before they are

used for training of and inference by ML models. In addition, depending on the goals of the ML

application being developed, different frameworks and libraries must be used. For example, a

company may need to use three different ML frameworks if they want to train deep learning,

tree-based, and linear models. Big data enabling tools such as messaging brokers [11–13],

distributed file systems [14,15], NoSQL databases [16–20], and data processing engines [21–25]

have been used to support the ingestion, storage, and processing of IoT data. Libraries and

frameworks such as TensorFlow [26], MLlib [27], Pytorch [28], Deeplearning4j [29], and

Keras [30] have also been used to apply machine learning to IoT data.

However, integrating Big Data enabling tools with ML software to create end-to-end work-

flows to train and infer IoT data is a time-consuming task that requires specialized skills, and

code that is repetitive and complex to manage. Given the heterogeneity of tools, many are

incompatible with each other. The advances in software for IoT data have not yet converged on

standard formats and interfaces across Big Data tools and ML frameworks. In this way, creating

ML applications using large volumes of historical and online IoT data can be prohibitively

complex and expensive.

For example, the development of typical ML applications using IoT data usually involves

three steps. First, data engineers code data workflows that produce training data using Big

Data tools. Second, data scientists downsample data and use ML frameworks in notebook

environments [31, 32] to develop and experiment with new models. Finally, software engineers

work to deploy trained models in production systems. The hand-off between these steps leads to

bottlenecks and production issues such as hard-to-maintain glue code, hidden dependencies,

feedback loops, and pipeline jungles, which are signs of many of the machine learning anti-

patterns described by Sculley et al. [33]. Moreover, applying machine learning to real IoT data

includes challenges such as keeping models updated and running multiple ML workflows in

parallel.

Most big players in machine learning have faced these challenges and started solving these

1.2. Contribution 3

problems internally with their own platforms. For example, Uber has built its ML orchestration

platform called Michelangelo [34], Airbnb has Bighead [35], Netflix has developed the Meson

platform [36], Google has introduced TensorFlow Extended (TFX) [37], and Facebook has

implemented its data pipeline platform for generating and predicting models [38]. These are

all in-house proprietary platforms to make sure that their time and money are not wasted on

developing repetitive ML workflows and management tools. Nevertheless, not every company

has the capabilities to invest in ML orchestration, and many large corporations still fail to

see the significant impact it will have on their business. Furthermore, Cloud providers like

Amazon (AWS) [39], Google [40], and Microsoft (Azure) [41] have built services on their cloud

platforms that cover IoT data ingestion and preprocessing as well as, training and deployment of

ML models, but none provides services to do all of the above using integrated and orchestrated

solutions.

The primary goal of this research is to overcome the challenges of integrating Big Data

enabling tools and machine learning software to provide a unified platform where end-to-end

ML workflows can be orchestrated for both training of and inference by ML models on IoT

data.

1.2 Contribution

The main contribution of this thesis is the Machine Learning Framework for IoT data (ML4IoT),

which is designed to orchestrate machine learning workflows to perform training and enable

inference by ML models on IoT data.

To address the problem of integrating big data tools and machine learning into a unified

platform, the proposed framework enables the definition and execution of end-to-end ML

workflows using REST APIs. The definition of ML workflows using high-level APIs abstracts

from users and developers the complexities of creating complex and repetitive code to integrate

the numerous tools required to apply ML to IoT data. Two types of ML workflows can be

4 Chapter 1. Introduction

created in this framework: batch and online ML workflows. These workflows are composed

of a set of configurations that define the sequential tasks and parameters required to train and

deploy ML models to infer online IoT data.

Moreover, to address the challenges of running multiple ML workflows in parallel, the

ML4IoT was designed to use container-based components that provide a convenient mechanism

for horizontally and independently scaling the ML4IoT to execute multiple ML workflows in

parallel. The automated execution of the ML workflows is orchestrated by backend services

provided by the ML4IoT , which uses containerized microservices to execute the tasks defined

in the workflows. Packaging software code into portable containerized microservices enables

ML4IoT to run ML workflows with different software and hardware specifications in parallel.

For example, ML workflows can use models provided by different frameworks (e.g., TensorFlow

[26], MLlib [27]) running on a mix of CPUs and GPUs. Furthermore, the use of containers

provides process isolation between different ML workflows and ensures that a single workflow

failure does not affect the execution of other workflows running in parallel.

Finally, to address the common production issues faced during the development of ML appli-

cations, the proposed framework used microservices architecture to bring flexibility, reusability,

and extensibility to the framework. For example, machine learning is evolving at a rapid

pace, and ML libraries and frameworks can become outdated quickly. In the ML4IoT , these

frameworks and libraries used to build ML models can be added, replaced, or updated without

affecting the other components of the framework. Also, splitting the design of ML workflows

into small and specialized microservices facilitates the reuse of these software components.

Lastly, it contributes to the extensibility of the ML4IoT, because when the design of ML work-

flows is divided into well-defined components, it creates natural points of extension for new

functionalities.

ML4IoT was evaluated in three experiments using two types of real-world IoT data from the

energy and traffic domains. The first experiment investigated the feasibility of the framework by

assessing its ability to orchestrate ML workflows using different ML libraries and IoT data. The

1.3. Organization of the Thesis 5

results achieved in this evaluation demonstrated that ML4IoT managed to automate the execution

of ML workflows, which were used to perform short-term prediction of energy consumption

and traffic flow using two ML models, Random Forest (RF) and LSTM.

The framework elasticity was evaluated in the second experiment by studying its ability

to scale to support the execution of multiple ML workflows in parallel. The obtained results

suggested that the proposed framework can manage real-world IoT data, by providing elasticity

to execute 32 ML workflows in parallel, which were used to train 128 ML models simultaneously.

Finally, the third experiment investigated the performance of the framework by analyzing

the latency of the execution of ML workflows deployed to render prediction using online IoT

data. Also, results demonstrated that the performance of rendering online predictions is not

affected when 64 models are deployed in parallel to infer new information using online IoT

data.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 provides background information that is useful in understanding this work as

well as a literature review of related studies. This chapter first provides an introduction to

the technical terms and concepts that are used throughout this thesis. Second, this chapter

presents a review of current research that addresses the application of machine learning to

IoT data. Finally, it contrasts the contribution of this thesis with existing practice.

• Chapter 3 presents the components of the ML4IoT . Besides providing an overview of the

function of each component, this chapter also describes how each part interacts with the

others.

• Chapter 4 presents an evaluation of the ML4IoT . First, it introduces an implementation

of a prototype system based on the proposed framework, followed by descriptions of the

6 Chapter 1. Introduction

experimental set-up and the IoT data used in the experiments. Finally, the experiments

and a discussion of the preliminary results are presented.

• Chapter 5 provides the conclusions of this thesis along with a discussion of future work

possibilities.

Chapter 2

Background and Literature Review

This chapter serves a dual purpose: first, it introduces various terms related to the topics

discussed in this thesis, and second, it provides an overview of existing research on topics

related to the application of machine learning to IoT data.

2.1 Background

2.1.1 Internet of Things

The Internet of Things (IoT) is a network of internet-connected devices, including sensors,

machines, vehicles, and other elements of the real world. Gartner [5] predicts that the IoT will

reach 26 billion units by 2020, impacting a wide range of industries. The availability of IoT

data produced by this giant network of devices has created new opportunities for innovative

applications, for example, smart cities [6], smart agriculture [42], and smart grids [8].

IoT data

The actual value of the IoT for companies can be fully realized when valuable business informa-

tion is extracted from the data produced by IoT devices. However, the high volume, high speed,

and high variety of IoT data sources pose challenges to retrieving relevant information from

7

8 Chapter 2. Background and Literature Review

these data. Dealing with IoT data usually involves the steps of ingesting [43], storing [44], and

processing historical and online data [45]. These steps are discussed below.

• Ingesting IoT data is a usual step required to manage IoT data [25]. It involves ingesting

the data into a platform where they are processed and analyzed. For example, in a smart

city traffic scenario where thousands of sensors are deployed to collect measures of the

traffic flow,congestion on a highway is detected by correlating information produced by

different sensors spread over the city. Therefore, the data generated by IoT devices need

to be ingested into a centralized platform where they can be analyzed and correlated.

Tools such as message brokers [11–13], data ingestion tools [46], extract-transform-load

solutions [47], and machine-to-machine communication frameworks [48] have been used

to create interfaces where IoT data can be ingested for later processing.

• Storing IoT data is challenging because of the large volume of data produced by IoT

devices. However, a broad range of ML algorithms can use past data to build models that

are applied later to both historical and online IoT data. Even in scenarios where the data

distribution changes with time, past data are useful to help create evolving ML models

that can adapt to drift in data patterns. Distributed File Systems [14, 15] and NoSQL

databases [16–20] are examples of technologies that have been used for historical storage

of IoT data.

• Processing IoT data when they are still in motion is critical because the detection of

patterns and anomalies in real time can have a considerable impact on event outcomes. In

addition, IoT sensors are a valuable source of online data. For example, during building

operation, a significant amount of energy may be wasted due to equipment and human

faults, but ML models can be used to detect abnormal consumption patterns using online

data collected from IoT sensors. In this case, energy waste is reduced if appropriate

energy-saving procedures are adopted based on information provided by the online data.

Tools such as stream processing systems [21–25] and ML libraries [26–30] have been

2.1. Background 9

used to process historical and online IoT data.

2.1.2 Machine Learning

Machine Learning (ML) is a technique that uses algorithms to learn complex patterns auto-

matically from the data [49]. Because of the enormous potential of automating tasks that do

not require human intervention, machine learning has become a ubiquitous technology. The

development of ML applications is divided into two phases: training and inference. The training

phase involves optimizing the parameters of a function, called the loss or cost function, which

generates a trained ML model. The inference phase of machine learning is also referred to in

the literature as prediction serving, models score, or model prediction [9]. This phase involves

the deployment of trained ML models to infer information using new data. The quality of data

impacts the results in both the training and inference phases of machine learning. For this reason,

data preprocessing tasks are often used to improve the overall quality of the data used in ML

applications.

First, this section introduces the data preprocessing techniques used to prepare data before

training of and inference by ML models. Then, an overview is provided of how ML applications

are classified according to their training type. Next, two ML algorithms used in the evaluation

section of this research are discussed. Finally, the concept of ML workflow is discussed.

Data Preprocessing

Data preprocessing techniques are applied to outliers, noisy data, and missing data because

these can affect the results of the ML model [50]. Preprocessing the data helps to improve

the data quality, for example, by removing null and duplicate values of the data. Moreover,

preprocessing a dataset prepares the data for the application of ML algorithms. For instance,

new features can be created in the datasets, helping the algorithms to achieve better and more

accurate results. Data preprocessing tasks can be grouped into four categories: data integration,

data reduction, data cleaning, and data transformation [50].

10 Chapter 2. Background and Literature Review

• Data Integration seeks to merge the data from disparate data sources. The application of

ML generally involves the use of datasets that are stored in different places. In addition,

most of the data are produced by heterogeneous data sources and have various data

structures. In these cases, data integration methods help to assure the data quality when

datasets are merged.

• Data Reduction is used to obtain a smaller representation of the original dataset. In this

way, it contributes to increasing the efficiency of ML algorithms because fewer resources

are necessary to process the smaller datasets. The datasets produced after the application

of data reduction methods yield results similar to the original dataset.

• Data Cleaning replaces or corrects incomplete, noisy, and inconsistent data. Incomplete

data contain missing attributes or just aggregate data; noisy data present errors or values

that are not expected; inconsistent data include corrupt values. Data cleaning methods are

focussed on solving these three problems by filling in incomplete data, smoothing out or

removing noisy data, and fixing data inconsistencies.

• Data Transformation is used to transform data into other formats that can improve the

performance of ML models. Methods for data transformation include:

– Normalization rescales the values of the attributes to lie within a smaller range.

Normalization is required by some ML algorithms because attributes with larger

values can have more influence than smaller ones during model training. One

common method to normalize the data is to rescale the dataset attributes to range

within [0 1] using Eq. (2.1), where X is the dataset and n is the number of dataset

samples:

x̃n =
xn−min(X)

max(X)−min(X)
(2.1)

– Aggregation summarizes or aggregates values of attributes. For example, some IoT

2.1. Background 11

sensors periodically sense data and transmit them in short intervals, such as seconds

or minutes. Depending on the ML model goal, the data may need to be made to

represent longer ranges using data aggregation methods.

– Discretization replaces numeric attributes by mapping values to intervals or labels.

For example, if an attribute is used to represent the amount of time that an equipment

or sensor was faulty, instead of serving the exact numeric value of each fault, this

attribute can store discrete values, for example, less than 30 minutes, more than 30

minutes or less than one hour, more than one hour and so on.

– Feature engineering is used to rearrange or create new attributes that can help

train ML models. For instance, a popular feature engineering technique used in

time-series data involves rearranging data by representing each input instance using

a sliding data window instead of a single input value.

Machine Learning Types

The algorithms used in machine learning are classified according to how the learning process

is conducted. Four common classes are used to group ML algorithms: supervised learning,

unsupervised learning, semi-supervised learning, and reinforcement learning [49].

• Supervised learning uses a set of labelled data to train an algorithm. Labelled data imply

that each input data point in the training dataset has a defined output, which is called

a label value. At the end of the training process, for each input data point, the trained

algorithm should come up with an output similar to the label value. Supervised learning is

applied to solve two types of problems: classification problems and regression problems.

In classification problems, algorithms are used to infer a discrete value by classifying

the input data as part of a category or group. Regression problems involve inferring a

continuous value from each input data point.

• Unsupervised learning creates ML models using datasets that do not contain labels.

12 Chapter 2. Background and Literature Review

Hence, there is no correct answer or output for each input data point. The algorithms

try to find useful patterns and structure in the data. However, because there are no data

labels, it is challenging to evaluate the accuracy of algorithms trained using unsupervised

learning.

• Semi-supervised learning trains ML models using datasets that contains both labelled

and unlabelled data. In some cases, labelling all the input data points is a prohibitive task

because of the volume and velocity of the data, which require the use of semi-supervised

learning. In semi-supervised learning, data labels are still needed to validate algorithm

accuracy.

• Reinforcement learning finds an optimal way to accomplish a particular goal or improve

performance on a specific task. If the algorithm takes action that moves toward the goal,

it receives a reward; otherwise, it is given a punishment. The overall goal of the algorithm

is to predict the best next step to take to earn the biggest final reward. Training algorithms

using reinforcement learning is an iterative process in which the more rounds of feedback

are used, the better the agents strategy becomes.

Machine Learning Algorithms

The two ML algorithms used in this thesis are described below.

• Random Forest (RF), an algorithm proposed by Breiman [51], is an ensemble algorithm

that joins multiple decision trees to decrease the chance of overfitting. The algorithm

introduces randomness into the training process so that, in the set of decision trees, each

one is a little different. Combining the predictions from each tree reduces the variance of

the predictions, improving the performance of test data. The training of an RF involves a

technique called bagging [52], which uses an ensemble of C trees {T1(X), ...,TC(X)} to

produce C outputs {Y1 = T1(X), ...,YC = TC(X)}, where X = {x1, ..., xn} is an n-dimensional

feature vector and Ya,a = 1, ...,C is the value predicted by the ath tree. The output value

2.1. Background 13

Y is obtained by averaging the predictions from all the individual regression trees or by

taking a majority vote when the algorithm is applied to classification problems, as shown

in Figure 2.1.

Figure 2.1: Random Forest structure [1].

• Long Short-Term Memory (LSTM) is the most popular type of recurrent neural net-

works, which are algorithms that can perform parallel and sequential computation. Be-

cause of its capacity to learn long sequences and deal with the vanishing gradient prob-

lem [53], this algorithm is widely used in domain-specific applications such as time-series

prediction [54], speech recognition [55], and robot control [56]. As illustrated in Figure

2.2, each neuron of a long short-term memory (LSTM) networks has four components

called the cell, input gate, output gate, and forget gate. The cell is the memory component,

and the gates (input, forget, output) controls how the information flows inside the LSTM

neuron. LSTM networks can retain errors across time steps and layers, which enables

them to learn even when a large number of time steps are represented in the input data.

Machine Learning Workflow

The terms machine learning workflow or machine learning pipeline are commonly used

in the industry to define a sequence of steps performed during the development of ML

14 Chapter 2. Background and Literature Review

Figure 2.2: Long Short-Term Memory Neuron [2].

applications. Although there is no official definition of these terms, research published by

crucial players in machine learning such as Google [37], Facebook [38], and Twitter [57]

has used these terms in their publications.

The development of ML applications involves two distinct phases, a training phase, and

an inference phase [9], which are discussed below:

– The training phase typically begins with collecting and preprocessing a training

dataset. The attributes of the dataset are used as criteria for choosing from a wide

range of model designs (e.g., linear regression, random forest, LSTM, etc.) and

their corresponding training algorithms (e.g., supervised learning, unsupervised

learning, semi-supervised learning, reinforcement learning). After a model and

training algorithm have been selected, there are often additional hyper-parameters

that must be tuned by repeatedly training and evaluating the model.

– The inference phase is also referred to in the literature as prediction serving, models

score, or model prediction. In this phase, a new dataset is also collected and

preprocessed, and the ML models trained previously in the training phase are

deployed to take data as input and emit predictions. The inference phase requires

integrating ML software with other systems, for example, user interface applications,

live databases, and high-volume data streams.

2.1. Background 15

In the development of ML applications, a sequence of steps performed during the training,

or the inference, or both phases is called a machine learning workflow or a machine

learning pipeline. Figure 2.3 depicts an example of a generic machine learning work-

flow/pipeline.

Figure 2.3: Example of a generic machine learning workflow/pipeline.

The steps that compose these workflows or pipelines depends on several aspects, for

example, the use case, data domain, type of machine learning tasks, etc. Although the

terms workflow and pipeline are used interchangeably, this research has adopted the

term machine learning workflow because, in software engineering, the term workflow

is closely related to automation [58], which is one of the topics explored in this work.

Moreover, the term machine learning workflow is broadly defined in the industry, and it

also encompasses the term machine learning pipeline. In addition, in this research, the

terms batch machine learning workflow and online machine learning are used to define

the sequence of steps performed during the training and inference phases of machine

16 Chapter 2. Background and Literature Review

learning applications, respectively.

2.1.3 Time-series Forecasting

Time-series forecasting is a growing field of interest because of the large amount of

data produced daily by IoT devices can be classified as time-series data. A time series

is a chain of historical measures yt of an observable variable y at regular periods. For

example, an IoT sensor measuring the traffic conditions on a road produces data at specific

intervals, which constitute a time series. Time-series forecasting can be performed for

both single and multiple periods. Forecasting a single period, which is also known as

one-step-ahead, means forecasting the next value of the time-series sequence. Multi-step-

ahead forecasting consists of predicting the next H values [yN+1, ...,yN+H] composed of

N observations, where H > 1 denotes the forecasting horizon. Unlike one-step-ahead

forecasting, multistep-ahead forecasting tasks are more difficult [59], because this type of

forecasting must deal with additional complexities, such as accumulated errors, reduced

accuracy, and increased uncertainty [60].

Figure 2.4 shows the five strategies that have been proposed in the literature [3] to tackle

multi-step ahead forecasting tasks: Recursive, Direct, Multi-input Multi-output (MIMO),

Recursive and Direct (DirREC), and Direct and Multi-input Multi-output (DirMO).

Figure 2.4: Time-series forecasting strategies and their relationship [3].

– Recursive starts by predicting a value, which is then used for forecasting the subse-

quent time steps.

2.1. Background 17

– Direct predicts each step independently of the others, using specific models for each

step ahead.

– Multi-input Multi-Output (MIMO) differs from Recursive and Direct strategies

because it returns multiple outputs, where a value is predicted for each attribute of

the input data.

– Recursive and Direct (DirRec) is a combination of the Direct and Recursive strate-

gies.

– Direct and Multi-input Multi-output (DIRMO) is a combination of the Direct

and MIMO strategies.

2.1.4 Microservices

A microservices architecture is a software architecture composed of small and independent

services that work together [61]. Each service supports a specific function and uses a simple,

well-defined interface to communicate with other sets of services. A microservices architecture

is the opposite of the traditional monolithic architecture in which, although different components

or modules are used, the application is developed and deployed as one. A short discussion of

some of the vital differences between microservices and monolithic architecture is presented

next.

• Technology heterogeneity. Because the services are independent in a microservices

architecture, each component can adopt a different technology or framework. This also

enables new technologies to be adopted more quickly. With a monolithic architecture, any

change in one of the architectures components impacts a large part of the system. On the

other hand, in a microservices architecture, replacing a service does not affect the other

architectural components, enabling easy integration and adoption of new technologies.

• Scalability. In monolithic architectures, the components need to be scaled together. On

the other hand, because the microservices architecture is composed of smaller services, it

18 Chapter 2. Background and Literature Review

is easier to scale just those services that need scaling.

• Ease of deployment. Usually, changes in software implemented using monolithic archi-

tectures require the redeployment of the whole application to release the new software

version. In a microservices architecture, a modification can be made to a single service.

Then the changed service is deployed independently of the rest of the system.

2.1.5 Container-based Virtualization

Resource virtualization is a technique which uses an intermediary software layer on top of an

underlying host server in order to provide abstractions of multiple virtual resources. In general,

virtualized resources are called virtual machines (VM). Hypervisor-based virtualization and

container-based virtualization are the two most popular types of virtualization used in cloud

computing [62]. In hypervisor-based virtualization, a set of virtual machines (VM) is created to

share physical hardware resources, but each VM executes distinct operating systems [63]. On the

other hand, in container-based virtualization, the virtual instances created to share the physical

resources of the host server are called containers. Each container executes as a standalone

operating system, but they share a single operating system kernel. Because the containers share

the kernel of the host operating system, container-based virtualization leads to lower overhead,

and instantiating, relocating, and optimizing hardware resources is far easier [64].

Figure 2.5: Comparison of virtualization architectures: hypervisor-based versus container-
based [4].

2.2. Literature Review 19

Figure 2.5 shows the contrast between hypervisor-based and container-based virtualization.

Hypervisor-based virtualization provides an abstraction for the guest operating systems (one per

virtual machine). On the contrary, container-based virtualization works at the operating system

level, providing abstractions directly for guest processes.

Microservices architecture does not require containers to deploy the software components

[65]. Nevertheless, because containers are smaller, faster to instantiate, and faster to scale

than traditional virtual machines, containers have become a popular approach to combine

microservices architecture and container-based virtualization.

2.2 Literature Review

This section presents research related to this thesis divided into three categories: Machine Learn-

ing Platforms, Data Processing Frameworks, and Machine Learning and Big Data Frameworks

applied to IoT.

2.2.1 Machine Learning Platforms

This section presents a review of ML platforms that have been proposed to address challenges

in developing and deploying ML models.

Wang et al. [66] introduced Rafiki, which is a system to provide both the training and

inference services for ML models. In their work, users are exempted from constructing the ML

models, tuning the hyper-parameters, and optimizing the prediction accuracy and speed. Instead,

they upload their datasets, and configure the service to conduct training and then deploy the

model for inference. Docker containers are used to implement ML workflows.

Lee et al. [67] presented PRETZEL, a prediction serving system designed for serving

predictions over trained pipelines originally developed in ML.Net [68]. Their work explored

multi-pipeline optimization techniques to reduce resource utilization and improve performance.

Crankshaw et al. [69] introduced Clipper, which is a general-purpose low-latency prediction

20 Chapter 2. Background and Literature Review

serving system. Their work provided a model abstraction layer and a common prediction

interface that isolates applications from variability in ML frameworks and simplifies the process

of deploying a new model or framework to a running application. In their work, models are

encapsulated in containers to achieve process isolation.

Studies [66, 67, 69] have been focussed on providing generic ML platforms, which are in

turn focussed on achieving better efficiency during training and deployment of ML models.

Unlike this work, these studies do not address the challenges posed by IoT data, such as high

volume, high variety, and high velocity. This research extends previously cited approaches by

providing a framework designed to orchestrate and automate the execution of ML workflows

with IoT data.

Zhao et al. [70] proposed a ML platform to support the sharing of ML models developed

across various ML libraries. Their platform packs pre-trained ML models into Docker images,

which can be deployed to an appropriate run-time environment. Besides packaging ML models

in Docker images, the work described in this thesis enables training and deployment of models

using container-based virtualization.

Predict I/O [71] is an-open source project that breaks down the ML workflows into four

components: Data Source and Data Preparator, Algorithm, Serving, and Evaluation Metrics.

It deploys models as Web services and makes REST APIs available for prediction queries. In

its current implementation, only Spark MLlib is supported as a model engine. The framework

proposed in this thesis provides generic support for ML frameworks, which avoids being tied to

a specific library or implementation.

Cloud providers, like Amazon AWS [39], Microsoft Azure [41], and IBM Watson [72] have

already included services to train and deploy ML models on IoT data. However, their services

require integration of diverse components to preprocess the data and to train and deploy the

models to infer online IoT data. This research proposes an approach in which the components

required to apply ML models to IoT data are already integrated into a unified framework, which

enables orchestration and automation of ML workflows.

2.2. Literature Review 21

Uber [34], Airbnb [35], Netflix [36], Google [37], and Facebook [38], which are some of

the key players in ML have implemented their own ML orchestration platforms. Unfortunately,

their platforms are proprietary or not entirely publicly available.

To summarize the differences and similarities between ML4IoT and existing platforms, a

comparison is presented in Table 2.1.

Features ML4IoT Rafiki PRETZEL Clipper Acumos Predict I/O
AWS IoT
Azure IoT
IBM IoT

Easy cloud
deployment Yes Yes Yes No Yes No Yes

Training of
ML models Yes Yes No No No Yes Yes

Deployment of
ML models Yes Yes Yes Yes Yes No Yes

Integrated platform
for ML on IoT data Yes No No No No No No

Data preprocessing
tasks sharing Yes No No No No No No

ML model
sharing Yes No No No Yes No No

Support multiple
ML libraries Yes Yes No Yes Yes No Yes

Table 2.1: Comparison between ML4IoT and existing platforms.

2.2.2 Data Processing Frameworks

This section presents a review of data processing frameworks which have been used to apply

ML to IoT data.

Morales et al. [73] proposed the Scalable Advanced Massive Online Analysis (SAMOA)

framework, which enables standard ML algorithms to execute on top of distributed stream

processing engines. It provides a set of distributed streaming algorithms for the most popular

ML tasks such as classification, clustering, and regression. SAMOA also offers programming

abstractions that support the development of new algorithms.

Hido et al. [74] presented a generic computational framework called Jubatus for online

and distributed online ML. In their work, only the ML models are shared between distributed

22 Chapter 2. Background and Literature Review

servers, rather than data. Their framework can achieve high throughput for both online training

and prediction on Big Data streams.

Apache Spark [75] is a project proposed in 2009 by a group at the University of California,

Berkeley. Apache Spark has a programming model comparable to MapReduce [76], but extends

it with a data-sharing abstraction called Resilient Distributed Datasets (RDD). Spark can work

with a broad range of data processing workloads that previously required different engines, such

as SQL, streaming, machine learning, and graph processing [77].

These studies [73–75] provided generic computational processing frameworks that can be

used as the data processing engine for large amounts of data. Because the previously cited

works were designed to be generic, they required adaptation and additional architecture layers to

create effective and efficient solutions for IoT data. In contrast, this work focusses on providing

an end-to-end solution for ML orchestration of IoT data that can be flexibly applied to different

IoT use cases. The framework proposed in this work does not require adaptation and extra

components for use with IoT data.

2.2.3 Big Data and Machine Learning in IoT

This section presents a review of research that addressed the use of big data enabling tools and

ML frameworks with IoT data.

Cecchinel et al. [78] presented an approach using machine learning to provide an optimal

configuration that extended the battery lifetime of IoT sensors. In their work, middleware

generates an energy-efficient sensor configuration based on live data observations, which

dynamically optimizes sensors sampling frequency and network usage.

Yang et al. proposed a semi-supervised method in association with a generative adver-

sarial network [79] for supporting medical decision-making in an IoT-based health service

system. Their approach was designed to solve problems involving both lack of labelled sets and

imbalanced classes, which are common in medical datasets collected from IoT-based platforms.

Kumar et al. [15] proposed a scalable IoT-based three-tier architecture to process sensor

2.2. Literature Review 23

data and identify the most significant clinical parameters for patients to get heart disease. In

their work, the first tier focussed on collection of IoT data, the second tier stored the data, and

finally, the third tier applied a regression-based prediction model for heart disease.

Chou et al. [80] introduced a data-driven framework for fault detection in cellular-assisted

IoT networks. Their framework uses ML techniques to analyze crowd-sourced measurements

uploaded from several IoT devices. Then ML models are used to construct a global view of a

radio environment, namely, the radio environment map (REM) for diagnosis and management

purposes.

Shen et al. [81] presented a privacy-preserving SVM training scheme called secureSVM.

Their approach tackled the challenges of data privacy and data integrity by using blockchain

techniques to build a secure SVM training algorithm in multi-part scenarios where IoT data are

collected from multiple data providers.

Sun et al. [82] outlined a framework for modelling and clustering attacker activity patterns

based on IoT data collected from honeypots [83] deployed on a global scale. Their work

combines a ML model and a graph-based clustering algorithm for analyzing attacker patterns

without advanced feature engineering.

Wan et al. [48] designed an architecture focussed on manufacturing Big Data for active

preventive maintenance. They used an Industry 4.0 designed solution called UPC UA [84] to

ingest the data produced by IoT sensors. In addition, they proposed methods for collecting data

and applying ML algorithms to both historical and online manufacturing data.

Javed et al. [85] presented a machine-learning-based smart controller for HVAC (heating,

ventilation, and air conditioning systems) in commercial buildings. Data collected from IoT

sensors were used to train a recurrent neural network model that could recognize when a room

was unoccupied and switch off the HVAC, decreasing energy consumption.

The studies cited above aimed to use ML techniques to solve specific problems in IoT

environments, for example, IoT sensors efficiency [78], fault-detection [80], medical decisions

[15,86], security and privacy [81,82], preventive maintenance [48], and energy management [85].

24 Chapter 2. Background and Literature Review

Unlike these studies, this research proposes a general-purpose framework that supports machine

learning on various IoT datasets using different ML algorithms.

Preuveneers et al. [87] proposed the SAMURAI solution, which is a batch and online

data processing framework based on the Lambda architecture [88]. Their work integrates

components for complex event processing, machine learning, and knowledge representation.

Horizontal scalability is achieved with Big Data enabling technologies such as Spark and Apache

Storm [89].

Ta-Shma et al. [25] presented an architecture for extracting valuable historical insights and

actionable knowledge from IoT data streams. Their architecture supports both real-time and

historical data analytics using a hybrid data processing model. The main components used in

their architecture instance (Node-Red, Apache Kafka, Apache Spark, and OpenStack Swift)

were implemented using the microservices approach.

Strohbach et al. [90] proposed a framework for addressing the volume and velocity chal-

lenges [91] of the IoT data. The components of their framework were organized according to the

Lambda architecture design. However, they extended the Lambda architecture by supporting the

creation of statistical and machine-learning models using historical data that were later applied

to the online IoT data.

Mishra et al. [92] outlined a cognitive-oriented framework for IoT Big Data. Their frame-

work was designed for effective data management and knowledge discovery over IoT data

by applying the principles of data-centric architecture. A set of subsystems was combined to

construct their final framework, which provided a real-time platform for IoT Big Data and ML

capabilities for large-scale automation.

Sezer et al. [93] proposed a framework that provides support for storing IoT data, performing

semantic rule reasoning, and applying ML methods. The goal of their work was to provide better

management features for IoT sensors by means of data semantics. In addition, their framework

explores interoperability issues among existing platforms designed to deal with IoT data.

Pham et al. [12] presented a self-adaptive cloud-based framework for real-time IoT Big

2.3. Summary 25

Data analytics. Their framework collects and analyzes data for IoT services using existing

components such as M2M gateways [94], message brokers, and Big Data enabling tools such as

Apache Storm and Cassandra.

In contrast to previous studies [25, 87, 90, 92, 93], this research focusses on providing

methods to enable efficient development of ML applications with IoT data. Unlike the studies

mentioned previously, this research examines the orchestration and automation of end-to-end

ML workflows to support parallel training and deployment of multiple ML models with IoT

data.

2.3 Summary

This chapter has provided an overview of the concepts related to various topics that assist in

understanding the framework proposed in this research. More specifically, an introduction to

IoT, machine learning, microservices, and container-based virtualization terminologies has been

presented. In addition, current studies on various topics related to the application of machine

learning to IoT data were discussed and contrasted with the methods used in this work. The

methods used in this research are discussed in more detail in the following chapter.

Chapter 3

ML4IoT Framework

This chapter describes the Machine Learning Framework for IoT data (ML4IoT). First, an

introduction of the goals of the framework is presented in Section 3.1, followed by an overview of

its components and sub-components in Section 3.2. Finally, the orchestration of ML workflows

is discussed in Section 3.3.

3.1 Introduction

IoT devices produce massive amounts of data, at high speed, and from and from a vast variety

of sources. The high volume, high velocity, and high variety of data require several Big Data

enabling tools to ingest, store, and preprocess the IoT data before the training and inference

of ML models can take place. Moreover, depending on the goals of the IoT application being

developed, different ML frameworks must be used. However, creating and automating ML

workflows at scale to train and infer real-world IoT data are challenging tasks, often leading to

bottlenecks, production issues, and complex and repetitive code to manage. Also, applying ML

to real-world IoT data includes challenges such as keeping ML models updated and running

multiple ML workflows in parallel.

This thesis proposes the Machine Learning Framework for IoT data (ML4IoT), which is

designed to orchestrate ML workflows to perform training and to enable inference by machine

26

3.1. Introduction 27

learning models on IoT data. The ML4IoT uses containerized microservices to automate the

execution of tasks specified in ML workflows, which are defined through REST APIs. The

ML4IoT is generally implementation-agnostic, and therefore can be easily expanded to support

new components such as data preprocessing tasks, algorithm types, and ML frameworks.

The overview of the framework is shown in Figure 3.1. In the ML4IoT User Interface, two

types of ML workflows can be defined: batch and online machine learning workflows. These

workflows are composed of a set of configurations, which define sequential tasks and parameters

required to train and to deploy ML models using IoT data.

Figure 3.1: Machine Learning Framework for IoT data - ML4IoT.

To support the definition, orchestration, and scheduling of ML workflows, two key software

engineering technologies are used in the ML4IoT Core: microservices architecture and container-

28 Chapter 3. ML4IoT Framework

based virtualization. The microservices architecture enables the decoupling of ML4IoT software

components into small and specialized services, bringing flexibility, reusability, and extensibility

to the framework. In addition, container-based virtualization and microservices are combined

to deal with challenges such as the multitude of ML frameworks available and the parallel

execution of ML workflows.

In Figure 3.1, the Workflow Designer, Workflow Orchestrator, and Workflow Scheduler, are

three microservices that are used to define, orchestrate, and schedule ML workflows, respectively.

To orchestrate the execution of ML workflows, the Workflow Orchestrator communicates with

the Container Management System (CMS) to create containerized microservices that perform

the required data processing tasks. The software code needed to run these tasks is packaged

in Workflow Images (Docker images), which are used by the CMS to deploy the Workflow

Containers (Docker containers). The containerized microservices created by the CMS run the

tasks defined in the ML workflows by themselves or using the Distributed Data Processing

Engine.

The IoT data used during the execution of ML workflows are ingested and stored in the

ML4IoT Data Management component, which is composed of three sub-components: a Mes-

saging System, a Distributed File System, and a NoSQL database. ML4IoT Data Management

also supports the storage of trained models and predicted data, and provides temporary storage

for preprocessed data produced during ML workflow orchestration. The following sub-sections

detail the components and sub-components of the ML4IoT framework.

3.2 ML4IoT Components

The following sub-sections detail the components and sub-components of the ML4IoT frame-

work.

3.2. ML4IoT Components 29

3.2.1 ML4IoT User Interface

The ML4IoT User Interface is a front-end component that provides users with a graphical

interface to define ML workflows. Figure 3.2 shows an example of an implementation of the

ML4IoT User Interface.

Figure 3.2: Prototype of the ML4IoT User Interface.

This component simplifies the tasks of creating these workflows because all the steps and

parameters are defined in a simplified user interface. For example, to create an ML application

to predict energy consumption, first ML models need to be trained, and then, these models

need to be deployed to predict new information using online IoT data. The training of ML

models involves the execution of three common steps. First, a set of data is selected, then,

30 Chapter 3. ML4IoT Framework

it is preprocessed to remove inconsistencies, and finally, ML models are trained using the

preprocessed data. The deployment of models also requires the execution of sequential steps,

such as selecting online data, applying preprocessing tasks to these data, and using trained

ML models to predict new values. Creating custom software code to execute these steps often

leads to duplicate and hard-to-maintain glue code. In this way, defining ML workflows using a

graphical interface helps to avoid unnecessary duplication of code and produces standardized

representations of these workflows. The ML workflows defined in the ML4IoT User Interface

are persisted in a NoSQL database and executed according to user requests. The steps performed

during the definition of batch and online ML workflows are detailed in the next sub-sections.

Batch Machine Learning Workflow

Batch machine learning workflow is a logical representation of a set of sequential tasks and

parameters required to build ML models. The execution of this type of workflow produces

models, which can be used in online ML workflows.

The definition of a batch ML workflow involves the selection and configuration of historical

datasets, preprocessing tasks, and ML algorithms. These tasks are executed in three steps shown

in Figure 3.3 and discussed below.

Figure 3.3: Steps performed during the creation of batch ML workflows.

• Batch Data Selection defines the parameters used to create historical datasets during

execution of batch ML workflows. For instance, when this type of workflow is executed,

historical datasets are created using IoT data and are stored in the Distributed File System

(DFS). Examples of these parameters include the date range, the location in the DFS, and

the attributes of the dataset.

3.2. ML4IoT Components 31

• Data Preprocessing Definition specifies the preprocessing tasks to be applied to the

datasets defined in the previous step. These tasks are defined for each dataset along with

their parameters. For example, data aggregation is a common preprocessing task used for

IoT data and can be specified in this step.

• Model Definition defines the ML algorithms along with their parameters to be used to

train ML models. For example, the type of algorithm (e.g., LSTM, Linear Regression),

specific algorithm configurations, and how the datasets are split between training and

testing are some of the parameters defined in this step.

Online Machine Learning Workflow

Online machine learning workflow is a logical representation of a set of sequential tasks and

parameters required to deploy trained ML models to infer new information using online IoT

data. The definition of an online ML workflow involves the selection and configuration of

online datasets, trained ML models, and deployment parameters required to execute this type of

workflow. These tasks are performed in three steps shown in Figure 3.4 and discussed below.

Figure 3.4: Steps performed during the creation of online ML workflows.

• Online Data Selection defines the parameters used to create datasets composed of online

data during execution of online ML workflows. These online datasets are created using

the IoT data that are ingested in the Messaging System.

• Trained Model Selection is the step where a trained ML model, built by executing a batch

ML workflow, is selected for use to infer new information. The chosen model uses the

previously created online datasets as input to issue predictions during execution of online

ML workflows.

32 Chapter 3. ML4IoT Framework

• Trained Model Deployment defines the parameters related to deployment of a trained ML

model. For example, execution of online ML workflows uses a micro-batch approach

in which the steps defined in this type of workflow are executed repeatedly at a specific

pre-defined interval, such as every 30 seconds, every minute, every 30 minutes, and so on.

This interval is one of the parameters configured in this step. The micro-batch approach

was chosen because IoT sensors have different duty cycles and intermittent connectivity,

meaning that data are often delayed or misaligned. Executing the online ML workflows at

small intervals helps to deal with these issues and is also useful for data preprocessing

tasks where a sample data point needs to be correlated with previous values, such as the

sliding window technique.

3.2.2 ML4IoT Core

The ML4IoT Core uses the microservices architecture and container-based virtualization to

support the definition, orchestration, and scheduling of ML workflows. The microservices

architecture is an approach used in the ML4IoT that improves the flexibility of the framework.

For example, machine learning is evolving at a rapid pace, and ML libraries and frameworks

can appear and become outdated quickly. In ML4IoT , these frameworks and libraries used to

build ML models can be added, replaced, or updated without affecting the other components

of the framework. Moreover, splitting the design of ML workflows into small, specialized

microservices facilitates the reuse of these software components. Lastly, it contributes to the

extensibility of ML4IoT because when the design of ML workflows is divided into well-defined

components, this creates natural points of extension for new functionalities.

Moreover, the combined use of container-based virtualization and microservices addresses

common issues found during the development of ML applications in real-world scenarios. For

instance, packaging software code into portable containerized microservices enables the ML4IoT

to run ML workflows with conflicting software and hardware requirements concurrently. For

example, ML workflows can use algorithms provided in different frameworks (e.g., TensorFlow

3.2. ML4IoT Components 33

[95], MLlib [96], Scikit-learn [97]) running on a mix of CPUs and GPUs. It also provides

process isolation between different ML workflows and ensures that a single failure does not affect

the parallel execution of other workflows. Ultimately, the use of containerized microservices

provides a convenient mechanism for horizontally and independently scaling the ML4IoT

framework to execute multiple ML workflows in parallel. In the next subsections, the sub-

components of the ML4IoT Core are described in detail.

Workflow Designer

This component is a microservice that provides a REST API service to store logical repre-

sentations of ML workflows in a NoSQL database that stores the data in documents. These

documents use a JSON (JavaScript Object Notation) structure and provide an intuitive and

natural way to model ML workflows that is closely aligned with object-oriented design. In the

document-oriented NoSQL database, the notion of a schema is dynamic: each ML workflow

can contain different fields. This flexibility is particularly helpful for modeling the various

workflows that can be created in the ML4IoT . Moreover, having a representation of the ML

workflows stored in unified and hierarchical documents adds an audit trail to these workflows

and facilitates versioning and debugging. For instance, by using JSON documents to represent

ML workflows, users can record executions and keep track of model parameters, code, and

datasets for each ML workflow. Figure 3.5 shows an entity-relationship (ER) diagram that

illustrates the conceptual data model used to store the ML workflows in the NoSQL database.

The description of the entity types depicted in Figure 3.5 is given below:

• BatchWorkflow contains a list of the Dataset entities, a list of BatchModels entities, and

and scheduling parameters for batch ML workflows.

• RawData describes the metadata of the IoT data stored in the distributed file system.

• Dataset describes the metadata of a dataset created in a batch ML workflow.

34 Chapter 3. ML4IoT Framework

Figure 3.5: Conceptual data model for the ML4IoT.

• PreprocessingTask describes a preprocessing task associated with a Dataset.

• Batch Model describes a ML algorithm and its parameters in a batch ML workflow.

• TrainedModel describes a trained ML model generated after the execution of a batch

ML workflow.

• OnlineData describes the metadata of online IoT data ingested in the Messaging System.

• OnlineModel contains a TrainedModel entity, an OnlineData entity, and deployment

parameters for each trained model.

• OnlineWorkflow contains a list of OnlineModel entities.

The model presented in Figure 3.5 identifies the following relationships between the entities.

3.2. ML4IoT Components 35

• Contains. A BatchWorkflow contains one or more Dataset entities, and each Dataset can

be associate to only one BatchWorkflow.

• Has. A Dataset has one RawData, and each RawData can be associated to many Dataset

entities.

• Trains. A BatchWorkflow trains one or more BatchModel, and each BatchModel is trained

by only one BatchWorkflow.

• Applies. A PreprocessingTask is applied to only one Dataset, and each Dataset can be

applied many PreprocessingTask entities.

• Generates. A BatchModel generates only one TrainedModel, and a TrainedModel is

generated by one BatchModel.

• Utilizes. A TrainedModel utilizes one only one Dataset, and a Dataset can be utilized by

many TrainedModel entities.

• Runs. An OnlineWorkflow runs one or more OnlineModel, and each OnlineModel is

executed by only one OnlineWorkflow.

• Uses. An OnlineModel uses only one TrainedModel, and each TrainedModel can be used

by many OnlineModel entities.

• Consumes. An OnlineModel consumes only one OnlineData, and each OnlineData can

be consumed by many OnlineModel entities.

In relational databases, a table contains data about just one entity, while in the document-

oriented NoSQL database, a document can contain one or more of the entities depicted in Figure

3.5. An example of a batch ML workflow stored in a JSON document is shown in Listing 3.1.

36 Chapter 3. ML4IoT Framework

1 {” id”: ”1”,

2 ”datasets”: [{

3 ” id”: ”1”,

4 ”rawData”: {” id”: ”1”,

5 ”hdfsAddress”: ”hdfs://namenode:9000/sensorData/year=2019” },

6 ”sensorsId”: [”ML−2”], ”startDate”: ”1546300800”, ”endDate”: ”1551398399”,

7 ”features”: [”amps”, ”apparentpower”, ”humidity”, ”volts”, ”temp”, ”z”],

8 ”targets”: [”power”],

9 ”preprocessingTasks”: [

10 { ” id”: ”1”,

11 ”type”: ”remove−repeated−values”, ”serviceId”: ”2”},

12 { ” id”: ”2”,

13 ”type”: ”normalization”, ”serviceId”: ”4”},

14 { ” id”: ”3”,

15 ”type”: ”sliding−window”, ”params”: {”timeWindow”: ”3”}, ”serviceId”: ”5” }]

16 }],

17 ”batchModels”: [

18 {

19 ” id”: ”1”,

20 ”type”: ”random−forest”,

21 ”params”: {”datasetSplit”: ”0.95,0.05”, ”maxDepth”: ”5”, ”numTrees”: ”20”},

22 ”serviceId”: ”6” }

23]

24 }

Listing 3.1: Batch ML workflow represented in a JSON file.

Workflow Orchestrator

This component is a microservice that provides orchestration capabilities in the framework

described here. The Workflow Orchestrator automates execution, which accelerates ML ap-

plication development, ensures consistent ML practices across the development lifecycle, and

3.2. ML4IoT Components 37

optimizes the computational power required to execute these workflows. In addition, automating

ML workflow execution can help users build and evaluate more models more rapidly, which

can improve the quality of the trained ML models. By taking advantage of the conceptual data

model used to store the ML workflows, the Workflow Orchestrator models the workflows as a

sequence of steps, where each step can be executed by a containerized microservice. Figures 3.6

and 3.7 shows the steps performed during the orchestration of batch and online ML workflows,

respectively.

Figure 3.6: Orchestration steps of batch ML workflows.

Figure 3.7: Orchestration steps of online ML workflows.

The orchestration of batch ML workflows involves the execution of three steps: batch dataset

creation, data preprocessing, and model building. In addition, the data preprocessing step can

be composed of multiple sub-steps. In the first step, datasets are created, then preprocessing

38 Chapter 3. ML4IoT Framework

tasks are applied to these datasets, and in the third step, ML models are trained according to the

algorithms defined in each workflow. In Figure 3.6, the number of ML models built at the end of

the orchestration of the batch ML workflow is equal to the number of defined datasets times the

number of ML algorithms. For example, if a batch ML workflow is defined with three datasets

and two ML algorithms, then six ML models are trained when this workflow is executed.

The orchestration of online ML workflows also involves executing three computation steps:

online dataset creation, data preprocessing, and model inference. In the first step, online datasets

are created, then preprocessing tasks are applied to these datasets, and finally trained ML models

are used to render new predictions using the preprocessed data. The preprocessing tasks applied

to the online IoT data are the same preprocessing tasks that were used to train the model being

deployed. For example, when a trained ML model is deployed in an online ML workflow,

the preprocessing tasks applied to the batch dataset, which were used to train this model, are

automatically configured and applied to the online dataset. Examples of preprocessing tasks

implemented in the prototype system built to evaluate the ML4IoT include removal of null values,

removal of repeated values, sliding window, data aggregation, and normalization. Moreover,

Figure 3.7 shows that, for each trained model, the orchestration flow is executed repeatedly to

render new predictions. This prediction cycle is determined by a parameter configured for each

deployed model when defining the online ML workflow.

The Workflow Orchestrator orchestrates the execution of these ML workflows by sending

requests to the API of the Container Management System, which creates containerized microser-

vices to run the tasks defined in each step. For instance, the batch ML workflow shown in

Listing 3.1 is composed of one dataset, four preprocessing tasks (removal of repeated values,

data aggregation, normalization, sliding window), and two ML models (LSTM and RF). During

the execution of this workflow, seven containers are created dynamically. The first container

creates the batch dataset, then four containers execute the data preprocessing tasks sequentially,

and the last two containers perform the building of the two ML models in parallel. The details

of the orchestration of batch and online ML workflows are discussed in Section 3.3.

3.2. ML4IoT Components 39

Workflow Scheduler

This component can re-execute batch ML workflows automatically at intervals defined in each

one of these workflows. The goal is to provide a method to retrain ML models by executing batch

ML workflows at regular intervals. In some cases, the trained ML models become outdated

because they were trained with past data that do not represent the actual data distribution.

Because data distributions can be assumed to drift over time, building an ML model is not a

one-time exercise, but rather a continuous process. The Workflow Scheduler can execute batch

ML workflows at scheduled intervals to retrain ML models to keep them updated.

The ML4IoT keeps the information about which configuration choices were made to build

ML workflows in a NoSQL database. That ensures that all the steps that led to actual ML models

can be reproduced. By simply re-executing the batch ML workflows to new IoT data, ML

models are retrained. Also, if a retrained ML model is deployed in a online ML workflow, this

workflow is updated automatically.

The parameters used to retrain batch ML workflows include a configuration to update the

interval range of the datasets and the frequency of re-execution of the workflows. For example,

a batch ML workflow can be scheduled to execute every day at midnight with each dataset

contained data from the past 30 days. Then, each execution re-executes the entire workflow,

which generates a new version of the previous trained ML models.

The Workflow Scheduler is a microservice, which provides scheduling services in the frame-

work by exposing a REST API where the re-execution of batch ML workflows can be configured.

By allowing to schedule the re-execution of batch ML workflows, this component enables re-

training of ML models on non-critical business hours and also facilitates the distribuition of the

processing workload along different periods of the day. To start de re-execution of batch ML

workflows, the Workflow Scheduler sends a REST request to the Workflow Orchestrator, which

orchestrates the necessary steps. The orchestration steps performed during the re-execution of

batch ML workflows are similar to the steps performed during the first execution, but, the batch

datasets used to train the ML models are updated and created with recent data according to the

40 Chapter 3. ML4IoT Framework

parameters defined in the batch ML workflows.

Container-based Components: Workflow Images, Container Management System, and

Workflow Containers

Workflow Images, Container Management System, and Workflow Containers are container-based

software employed to support the execution of the ML workflows. Workflow Images are Docker

images, which are instantiated by the Container Management System and become Workflow

Containers (Docker containers). The details of these sub-components are described below.

• Workflow Images are Docker images where reusable software code is implemented to

execute tasks defined in ML workflows. Besides the software code to execute specific

tasks, the Docker images also allow for packaging together all the software dependencies

needed to run them as an isolated process (e.g., libraries and binaries). In this way,

each step of computation required to execute batch and online ML workflows can be

implemented on a separated Docker image. An example of a Dockerfile used to create

Docker Images is shown in Listing 3.2.

1 FROM jalves7/tensorflow−hadoop:latest

2 MAINTAINER Jose Miguel <jalves7@uwo.ca>

3 ADD ./modelFactory.py /app/trainLSTM.py

4 ADD ./docker−entrypoint.sh /app/docker−entrypoint.sh

5 ENTRYPOINT [”sh”, ”/app/docker−entrypoint.sh”]

Listing 3.2: Example of a Dockerfile that is used to define Docker images.

The first line in Listing 3.2 is used to prepare and set up the Docker image for the

execution. With the help of the inheritance capacity of Docker, it is possible to start with

an environment that had an ML framework already installed, as indicated in line (1), by

picking the image tensorflow-hadoop:latest. Line (3) copies to the Docker image a Python

code that trains an ML model. Lines (4-5) define a start point for the Docker image, that

is a script which executes the Python code responsible for training an LSTM model.

3.2. ML4IoT Components 41

• Container Management System is the software responsible for deploying containers

according to the requests sent by the Workflow Orchestrator. The ML4IoT was designed

to be executed in an environment controlled by a CMS, specifically Docker Swarm [98].

From an architectural standpoint, no specific CMS implementation is required as long

as it supports all functionalities expected. In theory, distinct implementations can be

used simultaneously, for example, Kubernetes [99], requiring only the adaptation of the

code in the Workflow Orchestrator that interact directly with the CMS. The following list

summarizes the features that must be provided by the CMS:

– Docker support: the containerized microservices used to execute ML workflows

have an associated Docker image, and the CMS must support the creation of multiple

containers based on this image.

– API access: the CMS must provide an API that the Workflow Orchestrator can use

to request the creation of containers to run tasks defined in the ML workflows.

– Container scheduling: once a container is created, it must be automatically scheduled

to execute in one available server.

• Workflow Containers are Docker containers created dynamically by the CMS according to

requests from the Workflow Orchestrator. In the ML4IoT , the containers can be destroyed

when they finish their execution, which optimizes the use of computational resources.

Also, no code needs to be rewritten to move the containers from experimentation to

production, or to deploy them in multiple platforms, such as locally or in cloud services.

Figure 3.8 shows the simplified lifecycle of Docker containers.

42 Chapter 3. ML4IoT Framework

Figure 3.8: Simplified lifecycle of a Docker Container.

When new containers are created, the first state of the containers is created. Then, the

CMS starts their execution, moving them to the running state. When the containers

finish their execution, they send a message to the REST API provided by the Workflow

Orchestrator to indicate that their execution is done. Then, the containers go to the

stopped state. The paused and kill states are used for the CMS to pause or to force the

stop of the containers execution.

Distributed Data Processing Engine

The Distributed Data Processing Engine is a distributed system designed to process large

volumes of data. In the ML4IoT framework, the Distributed Data Processing Engine compo-

nent executes data preprocessing tasks that require high computational power and need to be

performed in a distributed way. The ML4IoT was designed to use Apache Spark [75] as the

Distributed Data Processing Engine. The extension of the framework to support new implemen-

tations of the Distributed Data Processing Engine involves extending the code implemented in

3.2. ML4IoT Components 43

the Workflow Images.

3.2.3 ML4IoT Data Management

ML4IoT Data Management provides components to ingest and store IoT data. These IoT

data are used during the execution of batch and online ML workflows to train and deploy

ML models. This component is formed of three sub-components, a Messaging System, a

Distributed File System, and a NoSQL database. These sub-components are big data tools

that can deal with the high-volume, high-speed, and high variety characteristics of IoT data.

The Messaging System is designed to deal with massive amounts of IoT data ingestion, the

Distributed File System is used to store the data permanently, and the NoSQL database supports

the temporary storage of preprocessed data during the orchestration of ML workflows. The

ML4IoT was designed to use Apache Kafka [100] as the Messaging System, Apache Hadoop

as the Distributed File System [101], and MongoDB [16] as the NoSQL database. Similarly

to the Distributed Data Processing Engine, ML4IoT can use different implementations of the

Messaging System, Distributed File System, and NoSQL database, by extending the Workflow

Images in which is packaged the code used to execute data processing tasks that interacts with

these three components.

Messaging System

The Messaging System is a distributed application where the IoT data is ingested in the platform.

The framework requires that the IoT data have a time-series format, which means that each

inputted data needs to have a timestamp attribute. This attribute helps to store the IoT data

efficiently in the Distributed File System, by allowing the organization of the data according

to temporal information. Also, the timestamp attribute is used to select historical and online

datasets during the execution of ML workflows. Popular data preprocessing tasks applied to IoT

data, such as data aggregation, slide-window, and feature generation, also require timestamp

attributes during their execution. The Messaging System can handle a high volume of IoT data

44 Chapter 3. ML4IoT Framework

ingestion, and it can provide mechanisms that enable the parallel consumption of data.

Distributed File System

The Distributed File System (DFS) is the component where the IoT data is stored permanently

because the Messaging System is not optimized to store a large volume of data. Also, the

DFS allows the storage of any data format and size. Hence, the DFS also stores the trained

ML models produced by the execution of batch ML workflows. In the ML4IoT , the data is

pulled from the Messaging System to the Distributed File System using batch processing jobs

performed by the Distributed Processing Engine.

NoSQL Database

The NoSQL database stores temporary data generated during the execution of batch and online

ML workflows. The execution of ML workflows involves intensive reading and writing tasks,

and NoSQL databases usually present better reading and writing rates than other traditional tools

designed to handle data storage such as RDBMS or Distributed File Systems.

3.3 ML4IoT Design

The development of ML applications in IoT data usually involves the creation of multiple ML

workflows first to build ML models, and second to deploy these models to render predictions

using online data. Moreover, to build ML models, several ML workflows need to be tested

and executed with different configurations in order to find the optimal combination of these

parameters. Besides, the hyper-parameters of ML algorithms, components such as datasets and

preprocessing tasks employed in the ML workflows also affect the ML models accuracy.

Orchestrating the execution of ML workflows allows the automated running, testing, and

tuning of multiple ML workflows in parallel, which accelerates the development of ML applica-

tions. Also, the orchestration of ML workflows helps to provide an established path to deploying

3.3. ML4IoT Design 45

ML models into production environments, which enables users to build ML applications at scale

easily. Lastly, the automated execution of ML workflows is closely aligned with one of the

foundational pillars of DevOps [102], which is a popular methodology focused on increasing

the organizations ability to deliver applications and services at high-velocity.

The following sub-sections discuss the orchestration details of batch and online ML work-

flows.

3.3.1 Batch ML Workflow Orchestration

The pseudo-code used in the Workflow Orchestrator to orchestrate the execution of batch ML

workflows is outlined in Algorithm 1, which highlights the execution of three steps: batch dataset

creation, data preprocessing, and model building. Some instructions of the Algorithm 1 contains

high-level abstractions (e.g., batchWorkflow, dataset) that are based on entities described in the

conceptual data model shown in 3.5.

Algorithm 1: Orchestration of Batch ML Workflows

/* Batch Dataset Creation [line 1 to 3] */

1: procedure StartBatchWorkflowExecution(batchWork f low)
2: for each dataset in batchWork f low do
3: createHistoricalDataset(dataset)

4: procedure ExecuteBatchWorkflowNextStep(batchWork f low, dataset, lastS tep)
5: work f lowNextS tep← getWorkflowNextStep(batchWork f low,lastS tep)

/* Data Preprocessing [line 6 to 8] */

6: if work f lowNextS tep is DataPreprocessing then
7: preprocessingTask← getNextPreprocessingtask(batchWork f low,lastS tep)
8: applyPreprocessingTask(dataset,preprocessingTask, batchWork f low)

/* Model Building [line 9 to 11] */

9: else if work f lowNextS tep is ModelBuilding then
10: batchModel← getWorkflowNextModel(batchWork f low,lastS tep)
11: buildMachineLearningModel(batchModel, dataset, batchWork f low)

In Algorithm 1, lines (1-3) execute the creation of historical datasets defined in the batch

ML workflows. Line (3), calls a procedure that interacts with the CMS to create a containerized

microservice that executes the creation of a new historical dataset. It is necessary to mention that

46 Chapter 3. ML4IoT Framework

the requests sent to the CMS use asynchronous calls, which allow the creation and execution

of multiple containerized services simultaneously. For example, if a batch ML workflow is

defined with three datasets, the execution of the tasks to create these datasets happens in parallel.

When a containerized microservice created in the first step (batch dataset creation) finishes its

execution, it sends a REST request to the Workflow Orchestrator that executes the procedure,

ExecuteBatchWorkflowNextStep (line 4). Then, depending on the workflow definitions, data

preprocessing (lines 6-8) or the model building (lines 9-11) steps are executed.

Figure 3.9: Sequence diagram: execution of batch ML workflows.

Also, the execution of the steps shown in Algorithm 1 involves the interactions among the

containerized microservices created dynamically and other components of the framework. The

3.3. ML4IoT Design 47

sequence diagram depicted in Figure 3.9 shows an example of these interactions. The diagram

has three main parts highlighted by the different shades of grey in the activation bars, which

indicates the execution of tasks related to the three steps outlined in Algorithm 1.

The details of the diagram are discussed below.

• Batch dataset creationis the first step performed in the execution of batch ML workflows.

In the diagram, the Workflow Orchestrator sends a request to the CMS to create a

new containerized microservice. The new containerized microservice interacts with the

Distributed Data Processing Engine to create a new dataset, using historical IoT data that

are stored in the Distributed File System. When the Distributed Processing Engine finishes

execution, the containerized microservice sends a request to the Workflow Orchestrator to

execute the next step defined in the batch ML workflow.

• Data Preprocessing is the step where preprocessing tasks are applied to each dataset

defined in the workflow. Similarly to the previous step, the diagram shows that the

Workflow Orchestrator orchestrates the creation of a new containerized microservice,

which uses the Distributed Data Processing Engine to apply data preprocessing tasks to a

previously created dataset.

• Model Building is the step where tasks are executed to train and test ML models according

to the parameters defined in batch ML workflows. The diagram illustrates that the

Distributed Data Processing Engine is used to train and test an ML model using a

preprocessed dataset. The trained ML model generated at the end of execution is stored

in the Distributed File System and can be used in online ML workflows.

3.3.2 Online ML Workflow Orchestration

The pseudo-code used in the Workflow Orchestrator to orchestrate the execution of online

ML workflow is outlined in Algorithm 2 and highlights the execution of three steps: online

dataset creation, data preprocessing, and model inference. Some instructions of the Algorithm

48 Chapter 3. ML4IoT Framework

2 contains high-level abstractions (e.g., batchWorkflow, dataset) that are based on entities

described in the conceptual data model shown in 3.5.

Algorithm 2: Orchestration of Online ML Workflows

/* Online Dataset Creation [line 1 to 3] */

1: procedure StartOnlineWorkflowExecution(onlineWork f low)
2: for each onlineModel in onlineWork f low do
3: createOnlineDataset(onlineDataset)

4: procedure ExecuteOnlineWorkflowNextStep(onlineWork f low, onlineModel, lastS tep)
5: work f lowNextS tep← getWorkflowNextStep(onlineWork f low, lastS tep)

/* Data Preprocessing [line 6 to 8] */

6: if work f lowNextS tep is DataPreprocessing then
7: preprocessingTask← getNextPreprocessingtask(onlineWork f low, onlineModel, lastS tep)
8: onlineDataset← getOnlineDataset(onlineWork f low, onlineModel)
9: applyPreprocessingTask(onlineDataset, preprocessingTask, onlineWork f low, onlineModel)

/* Model Inference [line 9 to 11] */

10: else if work f lowNextS tep is ModelInference then
11: inferModel(onlineDataset, onlineModel, onlineWork f low)

In Algorithm 2, lines (1-3) execute the creation of online datasets defined in the online ML

workflows. The objective of online ML workflows is to deploy trained ML models to infer new

information using online IoT data. For this reason, this type of workflow is executed continu-

ously, and the containerized microservice created by the function in line (3) is not destroyed

after its execution. Contrary to the batch ML workflows, the containerized microservices created

in the first step (online dataset creation) repeat their execution at intervals defined in the online

ML workflows. When a containerized microservice finishes the creation of an online dataset, it

sends a REST request to execute the procedure ExecuteOnlineWorkflowNextStep (line 4). Then,

depending on the workflow definitions, data preprocessing (lines 6-8) or the model inference

(lines 9-11) steps are executed.

The orchestration of online ML workflows also involves the interactions among the con-

tainerized microservices created dynamically and other components of the framework. The

sequence diagram depicted in Figure 3.10 shows an example of these interactions.

3.3. ML4IoT Design 49

Figure 3.10: Sequence diagram: execution of online ML workflows.

The diagram has three main parts highlighted by the different shades of grey in the activation

bars, which indicates the execution of tasks related to the three steps outlined in Algorithm 2.

The details of the diagram are discussed below.

• Online Dataset Creation is the step where data processing tasks are executed to create

an online dataset from the online IoT data that is ingested in the Messaging System. The

diagram shows that this step starts with the creation of a containerized service that uses

the Distributed Data Processing Engine to select from the Messaging System an online

IoT dataset. Then, the selected online dataset is stored in the NoSQL database.

• Data Preprocessing is the step where data preprocessing tasks are applied to the online

datasets created previously. These tasks are the same which were used to train the ML

50 Chapter 3. ML4IoT Framework

model that is being deployed in the workflow. The sequence of tasks demonstrated in the

diagram for the data preprocessing step is repeated for each preprocessing task associated

with the trained ML model. For example, if the removal of null values and the elimination

of repeated values were applied to the batch dataset used to train the ML model, the same

tasks are applied to the online dataset.

• Model Inference is the step where tasks are executed to use trained ML models to infer

new information according to the parameters defined in the workflow. In the diagram,

a containerized microservice is used to read a trained ML model from the Distributed

File System, then the model is employed to infer new values using a preprocessed online

dataset. The predictions produced by the trained ML model are stored in the NoSQL

Database.

3.4 Summary

This chapter has introduced the ML4IoT , presented its components and sub-components, and

discussed the orchestration of ML workflows.

Chapter 4

Evaluation

This chapter presents an evaluation of the ML4IoT focused on three main aspects: machine

learning orchestration, elasticity, and performance. It starts by introducing the implementation

details of a prototype system built to perform the experiments in this section. Next, it details the

IoT data used in the experiments. Following that, an experimental setup section outlines the

infrastructure used to run the experiments. Finally, it describes the tests conducted to evaluate

the framework. The first experiment investigated the feasibility of the framework by assessing

its ability to orchestrate ML workflows on different IoT datasets. The second experiment

examined the elasticity of the framework by studying its ability to scale to support the execution

of multiple batch ML workflows in parallel. The performance of the framework was evaluated

in the third experiment by analyzing the latency of the execution of online ML workflows.

4.1 Implementation Details

A prototype system based on the proposed framework was built for use as a proof of concept.

The implementation details of the prototype system are described below.

• ML4IoT User Interface. This component is a web application implemented as a mi-

croservice in AngularJS. The ML4IoT User Interface component communicates with the

51

52 Chapter 4. Evaluation

others component of the framework using REST APIs.

• ML4IoT Core. The three microservices, Workflow Designer, Workflow Orchestrator, and

Workflow Scheduler, are implemented in Java and Spring Boot. The NoSQL database that

stores the ML workflows is MongoDB. Table 4.1 shows the container images that were

implemented to support the orchestration of ML workflows. The Container Management

System (CMS) and the Distributed Data Processing Engine used in this evaluation were

Docker Swarm and Apache Spark Framework, respectively.

Workflow Type Orchestration Step Image Name Description

Batch Batch Dataset Creation data-selection Creates historical datatsets

Batch / Online Data Preprocessing remove-nulls Removes null values from datasets

Batch / Online Data Preprocessing remove-repeated Removes repeated values from datasets

Batch / Online Data Preprocessing aggregate-values Aggregates time-series data

Batch / Online Data Preprocessing sliding-window Generates sliding-window features

Batch / Online Data Preprocessing normalize-values Normalizes values of datasets

Batch Model Building lstm-building Builds predictive models using LSTM

Batch Model Building rf-building Builds predictive models using RF

Online Online Dataset Creation online-processing Creates online datatsets

Online Model Inference lstm-online Render predictions using LSTM models

Online Model Inference rf-online Render predictions using RF models

Table 4.1: Containers images and services implemented in each image.

• ML4IoT Data Management. The Messaging System component is implemented using

Apache Kafka. The Distributed File System uses the Apache Hadoop File System, and

the NoSQL database is implemented using MongoDB.

4.2 IoT Data

In the experiments presented in this section, two distinct sets of real-world IoT data were used.

The details of the data are given below.

4.2. IoT Data 53

4.2.1 Energy Data

The energy IoT data were collected in collaboration with T-innovation Partners, a company that

offers the use of innovative products for monitoring and control of electrical systems. The data

were provided by nine sensors that collect energy features from a building located at Western

University, London, Canada. The IoT data were pulled from a REST API, which sampled the

data at two-second intervals. Listing 4.1 shows an example of the raw data returned by the API.

1 {
2 ”success”: 1,
3 ”error”: ””,
4 ”time”: ”2019−03−06T01:05:54.457Z”,
5 ”result”: {
6 ”tz abbr”: ”EST”,
7 ”colID”: [1528556549],
8 ”colLabel”: [”10:02:29”],
9 ”rowData”: [[35.2]],

10 ”rowID”: [”4708”],
11 ”rowLabel”: [”MLDP−1”],
12 ”seriesUnits”: [”Amps”]
13 }

14 }

Listing 4.1: Sample of IoT energy raw data.

The JSON file returned by the API does not specify which feature is being provided. The

feature retrieved in each response of the API is determined in each request sent to the API. For

each sensor, 60 distinct features were collected. These features are composed of the ten distinct

energy domain measures shown in Table 4.2 multiplied by six mathematical operators. These

mathematical operators were standard deviation (sd), average (avg), last value (last), minimum

value (min), maximum value (max), and sum.

The energy data generated an average of 40,563,069 sensor readings per day. The data were

collected for four months, generating a total of 4,867,568,280 data samples.

54 Chapter 4. Evaluation

Features Description
Apparent Power The power supplied to the electric circuit

Reactive Power The energy generated or absorbed to maintain a constant voltage

Power The real power that the electric circuit is consuming

PF The ratio of real power to apparent power

Amps How fast an electric current flows in the electric circuit

Volts The energy potential that the electric circuit can provide

Frequency The number of cycles per second in an alternating current

Z The electric circuit impedance

Humidity The quantity of water vapour present in the air

Temp The external temperature of the sensors location

Table 4.2: Features and description of the energy data.

4.2.2 Traffic Data

The IoT traffic data were provided by the Madrid Council, which has deployed roughly 3000

traffic sensors in fixed locations around the city of Madrid on the M30 ring road. Madrid Council

published the data using a REST API [103], where the data were refreshed every 5 minutes.

The data provided by the API are refreshed every 5 minutes, and they were returned in an XML

format shown in Listing 4.2.

1 <pms>
2 <fecha hora>30/12/2018 16:35:08</fecha hora>
3 <pm>
4 <idelem>3409</idelem>
5 <descripcion>SEPLVEDA ENTRADA CRUCE N−S</descripcion>
6 <accesoAsociado>240102</accesoAsociado>
7 <intensidad>85</intensidad>
8 <ocupacion>0</ocupacion>
9 <carga>3</carga>

10 <nivelServicio>0</nivelServicio>
11 <intensidadSat>3000</intensidadSat>
12 <error>N</error>
13 <subarea>1718</subarea>
14 <st x>436008,175534995</st x>
15 <st y>4472593,78531503</st y>
16 </pm>
17 </pms>

Listing 4.2: Sample of IoT traffic raw data.

4.3. Experimental Setup 55

The features available in the traffic data are described in Table 4.3.

Features Description
Occupancy (ocupacion) Percentage occupancy of the location

Service level (nivelServicio) Indicates whether the road is congested

Load (carga) Based on intensity and occupation

Velocity (velocidad) Average speed of the vehicles

Intensity (intensidad) Number of vehicles per hour

Table 4.3: Features and description of the traffic data.

The traffic data consisted of an average of 1,006,319 sensor readings per day. The data were

collected for four months, creating 120,758,326 data samples.

4.3 Experimental Setup

Server CPU RAM
Server 1 2 x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz 96 GB

Server 2 2 x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz 96 GB

Server 3 2 x Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz 96 GB

Table 4.4: Hardware environment used in the experiments.

The servers were connected to an HP MSA 2040 SAN 12 TB storage system, which was

divided into four logical partitions of 2.5 TB each. The storage system was configured to allow

parallel access to all configured partitions. The big data tools used to implement the prototype

system were configured in clusters running on Linux containers. Table 4.5 describes the initial

cluster’s configuration of each distributed application.

The energy and traffic IoT data were ingested into Apache Kafka at an average rate of 525.81

records/sec. Apache Kafka was configured to retain the IoT data for one month, which was

equivalent to approximately 275 GB of data.

56 Chapter 4. Evaluation

Application Configuration
HDFS 1 name node, 3 data nodes

Apache Kafka 1 zookeeper, 3 data nodes

MongoDB 3 shards, 3 configuration servers, 3 routers

Spark 1 master node, 3 slave nodes

Table 4.5: Clusters configuration of big data tools used in the prototye system.

Figure 4.1: Average rate of IoT data ingestion.

The HDFS stored 4,988,326,606 sensor readings in a compressed format (ORC) that reduced

the data size from 1100 GB to 44 GB.

4.4 Machine Learning Orchestration Evaluation

The goal of this evaluation was to validate the ability of the framework of providing orchestration

services to automate the execution of ML workflows to train and infer ML models on IoT data.

The experiment performed in this evaluation is described below.

4.4.1 Experiment

To demonstrate how ML4IoT can automate ML workflow orchestration in IoT data, batch ML

workflows were created to train ML models to predict short-term energy consumption and traffic

flow. Online ML workflows were also used to deploy the previously trained models and make

predictions using online IoT data.

Two types of IoT data were used in this experiment, energy consumption and traffic flow.

4.4. Machine Learning Orchestration Evaluation 57

Energy consumption prediction is crucial for improved decision-making to reduce energy

consumption and CO2 emissions. Predicting traffic flow can also help reduce air pollution and

provide more secure traffic conditions. The ML workflows were defined using the REST APIs

provided by ML4IoT . The tasks defined in the ML workflows were executed automatically

while being orchestrated by backend services provided by ML4IoT . Details of the batch and

online ML workflows created in this experiment are described below.

• Batch ML workflows. As described in Table 4.6, four batch ML workflows were built to

train the ML models. In these workflows, the short-term prediction horizons varied from

15 to 60 minutes. Each batch ML workflow was defined to execute with both datasets

(energy and traffic) at the same time.

Batch Workflow Minutes Ahead
1 15
2 30
3 45
4 60

Table 4.6: Minutes ahead defined in each batch ML workflow.

– Batch Data Selection. The energy dataset contained data from one sensor, and

nine features were used as input to predict a target, which was the power feature.

The traffic dataset also contained data from one sensor, the target was the velocity

feature, and four features were used as input. Both datasets contained two months

of historical data. Table 4.7 shows details of the energy and traffic datasets used in

this experiment.

Dataset Inputs Target Readings

Energy
ApparentPower-last, ReactivePower-last, PF-last,
Amps-last, Volts-last, Frequency-last, Z-last,
Humidiy-last, Temp-last

Power-last 252.447.882

Traffic Occupation, Service Level, Load, Intensity Velocity 12.828

Table 4.7: Description of the energy and traffic datasets.

58 Chapter 4. Evaluation

The datasets were split between a training set (95%) and a test set (5%).

– Data Preprocessing Definition. The tasks of removing null values, removing

repeated values, sliding-window rearrangement, and normalization were defined

in the workflows and applied to both historical datasets. The data aggregation task

was performed only on the energy data because the collected data were aggregated

into two-second intervals. For this reason, the energy data were aggregated into

five-minute intervals.

– Model Definition. Each batch ML workflow was set to run two ML algorithms, RF

and LSTM. In this way, four models (2 datasets x 2 ML algorithms) were trained in

each workflow. The details of the parameters used in each algorithm are described

below.

* Random Forest (RF): was trained using 20 trees with a maximum depth of five.

The number of features to consider for splits at each tree node was one-third of

the total number of features. The MLlib framework provided the algorithm.

* Long Short-Term Memory (LSTM): was trained using an LSTM network with

five layers and five neurons in each layer. A dropout rate of 0.25 was applied to

the dense layers. The Tensorflow and Keras libraries provided the algorithm.

Algorithm 3: Training of Machine Learning Models

Input: Historical Dataset (D), Model (M), Training Parameters (T P)
Output: List of trained models(T M)

1: Dtrain,Dtest← splitDataset(D)
2: if output from Model(M) is multiple then
3: trainedModel←modelBulding(Dtrain, Dtest,model, T P)
4: append trainedModel to T M

5: else if output from Model(M) is single then
6: for each attribute in Dtrain do
7: trainedModel← modelBuilding(Dtrain, Dtest, model, T P)
8: append model to T M

4.4. Machine Learning Orchestration Evaluation 59

The steps performed to train the ML models are described in Algorithm 3, which

contains an if statement to check the output type of the model. Some ML frameworks

provide models that produce one single output, such as the RF implemented by

MLlib. In this case, because of the type of strategy used to predict the steps, one

model should be trained for each attribute in order to predict all the attributes to feed

the model recursively during the inference phase. After, the execution of batch ML

workflows, the trained ML models were used to infer online IoT data using online

ML workflows, which are described below.

• Online ML workflows. Also, four online ML workflows were created to apply the

previously built model using the batch ML workflows with online IoT data. Results were

generated for each model after executing 500 predictions.

– Online Data Selection. The online data used in the online ML workflows were

chosen from the same sensors that provided the data to train the models with the

batch ML workflows.

Algorithm 4: Inference of Machine Learning Models

Input: Online data (OD), List of trained models(T M), Time Steps to Predict (T)
Output: Predicted Data(PD)

1: for T interactions do
2: if traineModelOutputType is Multiple then
3: nextPredictedS teplist←modelPrediction(onlineData, trainedModel)
4: append nextPredictedS teplist to onlineData
5: append nextPredictedS tep to predictedOutputlist

6: else if traineModelOutputType is single then
7: for each attribute in onlineData do
8: nextPredictedS tep←modelPrediction(onlineData,trainedModel)
9: append nextPredictedS tep to nextPredictedS teplist

10: append nextPredictedS teplist to onlineData
11: append nextPredictedS teplist to predictedOutputlist

– Trained Model Selection. Each online ML workflow was configured to deploy four

60 Chapter 4. Evaluation

models, which were the same models trained on each batch ML workflow. The same

preprocessing tasks used in each trained ML model were automatically applied to

the online data. Algorithm 4 shows the steps performed during the inference of new

data using the trained models. Inference is performed using a recursive strategy. In

this strategy, one or more models are trained to perform a one-step-ahead forecast.

When the first prediction is rendered, the results are input into the models to predict

the subsequent time step. This action is repeated until the desired number of steps

has been predicted. The main concern of this strategy is whether it can produce a

sequence of successful predictions to prevent errors from propagating.

– Trained Model Deployment. The prediction intervals were configured according

to the number of steps ahead for which each model was trained. For example, the

ML models trained to predict 15 steps ahead were configured to predict the data in

intervals of 15 minutes.

4.4.2 Results and Discussion

The prediction performance of the ML models was evaluated using the mean absolute error

(MAE) and the mean square error (MSE) metrics defined in Eqs. 4.1 and 4.2, where yk and

ŷk are the actual and predicted values respectively. The MAE is an average of the absolute

prediction errors, and the MSE is the average of the squares of the prediction errors. MAE and

MSE are two of the most common metrics used to measure accuracy for continuous variables,

and they are negatively oriented scores, meaning that lower values are better. MAE and MSE

are also scale-dependent, which provides a straightforward way to quantify the prediction error:

MAE =

∑n
k=1 |yk − ŷk|

n
(4.1)

MS E =

∑n
k=1(yk − ŷk)2

n
(4.2)

4.4. Machine Learning Orchestration Evaluation 61

Table 4.8 shows the results for the prediction accuracy of the ML models deployed on the

online ML workflows.

Minutes Ahead
Traffic Energy

MAE MSE MAE MSE
RF LSTM RF LSTM RF LSTM RF LSTM

15 0.0910 0.0985 0.0305 0.0176 0.0746 0.1062 0.0170 0.0236
30 0.0863 0.0916 0.0273 0.0155 0.0357 0.0572 0.0046 0.0079
45 0.1210 0.0849 0.0523 0.0134 0.0496 0.0483 0.0053 0.0066
60 0.0941 0.0769 0.0309 0.0117 0.0306 0.0503 0.0040 0.0063

Table 4.8: Prediction accuracy of ML models rendering prediction using online IoT data.

Using traffic data, the results showed that the RF model achieved the best performance in

predicting the next 30 minutes, whereas the LSTM model gave the best performance for the

next 60 minutes. Looking at the energy data, it is clear that both the RF and LSTM models

demonstrated the best results for the next 60 minutes. Models trained with the LSTM algorithm

achieved lower MAE and MSE than models trained with the RF algorithm on traffic data. On

the other hand, with the energy data, the best results were obtained by models trained with the

LSTM algorithm. However, the plots depicted in Figs. 4.2, 4.3, 4.4, and 4.5 show that the RF

models achieved more success in capturing the evolving energy use and traffic flow conditions

when they fluctuated widely, because of the intricate patterns present in these two types of data.

Notably, with the energy data, the LSTM models were not successful in following the

real measured data. The results obtained with the LSTM models could be enhanced using

preprocessing techniques that were not applied in this evaluation. For example, both types of

IoT data presented strong fluctuations, which can impact the performance of ML models. The

application of preprocessing tasks such as removal of noise and outliers can help to smooth

the data and improve their quality. Nevertheless, implementing this type of technique can be

challenging on online IoT data because of several factors such as the number of online samples

available and time and processing constraints. Tuning and retraining the ML models can also

help increase overall prediction quality.

62 Chapter 4. Evaluation

Figure 4.2: Results of RF models predicting traffic data.

Figure 4.3: Results of LSTM models predicting traffic data.

4.4. Machine Learning Orchestration Evaluation 63

Figure 4.4: Results of RF models predicting energy data.

Figure 4.5: Results of LSTM models predicting energy data.

In the ML4IoT , the Workflow Scheduler can be used to schedule ML model retraining at fixed

intervals, which can augment the accuracy of predictions rendered by the proposed framework.

When Workflow Scheduler re-executes batch ML workflows, the retrained ML models that are

deployed in the online ML workflows are automatically updated to the new model version.

The results achieved in this evaluation demonstrated that ML4IoT managed to provide

orchestration services to automate the execution of ML workflows to train and infer IoT data.

By providing reusable and standardized ML workflows, ML4IoT supported the development of

end-to-end ML applications in two IoT use cases. The automated execution of ML workflows

64 Chapter 4. Evaluation

involved the orchestration of several tasks executed on top of Big Data tools (Kafka, Hadoop,

MongoDB, Spark) using different ML frameworks (MLlib, Tensorflow, and Keras). The results

obtained for online prediction of energy and traffic data showed that the framework is a feasible

solution for orchestrating ML workflows on IoT data.

4.5 Elasticity Evaluation

The goal of this evaluation was to validate whether the framework could dynamically allocate

resources to match the demands of orchestrating multiple ML workflows in parallel. The

experiment evaluated execution time, container allocation, and memory and CPU utilization

during the execution of batch ML workflows in four scenarios with different workloads. In each

workload, increasing numbers of batch ML workflows were executed in parallel. The batch ML

workflows and workloads used in this experiment are described below.

• Batch workflows. Each workflow was composed of the two datasets described in Table

4.7. Five preprocessing tasks were also applied to the energy dataset and four to the traffic

dataset. Moreover, each batch ML workflow was configured to build an RF and an LSTM

model for each dataset.

• Workloads. Table 4.9 describes the four workloads used in this experiment. In each

workload, the numbers of workflows increased from 4 to 32. In each workflow, two

datasets were created, nine preprocessing tasks were executed (five on the energy dataset

and four on the traffic dataset), and two models were trained for each dataset. For this

reason, from workloads 1 to 4, the number of datasets varied from 8 to 64, and the number

of preprocessing tasks varied from 36 to 576. Moreover, the number of ML models being

trained in parallel varied from 16 to 128 from workload 1 to workload 4.

4.5.1 Results and Discussion

Figures 4.6, 4.7, 4.8, and 4.9 show the results of each workload execution.

4.5. Elasticity Evaluation 65

Workload No Workflows Datasets Preprocessing Models
1 4 8 36 16

2 8 16 72 32

3 16 32 288 64

4 32 64 576 128

Table 4.9: Description of workloads used in the elasticity evaluation.

The maximum numbers of containers running in parallel in the workloads 1, 2, 3, and 4

were 12, 22, 38, and 96, respectively. The results concerning CPU and memory utilization

show that these resources were provisioned according to the numbers of containers running in

parallel. The peaks of CPU and memory utilization happened when the workloads reached the

maximum number of containers running concurrently. The graphs also show that at the end of

each workload, when the containers were destroyed, the CPU and memory utilizations returned

to their original levels, releasing server resources.

The results in terms of CPU and memory utilization also demonstrated that the number of

ML workflows running in parallel is limited by the number of resources available. For example,

in Figure 4.9, the CPU allocation achieved more than 90% when 96 containers were executing

in parallel. In the current design, the ML4IoT do not provide methods to queue the execution

of ML workflows, when there are no resources available in the servers. This lack of resources

management can affect the execution time of the ML workflows, when the demand for resources

is higher than the amount of resources available.

Although workloads 2, 3, and 4 presented size ratios of 1:2, 1:4, and 1:8 with workload 1,

the execution time ratios were 1:1.21, 1:1.76, and 1:3.38 respectively. The execution time results

increased slower than linearly, showing that allocating containers to execute ML workflows

dynamically is a valid strategy to provide an elastic solution that can support execution of

multiple ML workflows in parallel. The obtained results also suggested that the proposed

framework can manage real-world IoT data, by providing elasticity to execute 32 ML workflows

in parallel, which were used to train 128 ML models simultaneously.

66 Chapter 4. Evaluation

Figure 4.6: Workload 1 - Containers, CPU and memory allocation during parallel training of 16
ML models.

Figure 4.7: Workload 2 - Containers, CPU and memory allocation during parallel training of 32
ML models.

4.5. Elasticity Evaluation 67

Figure 4.8: Workload 3 - Containers, CPU and memory allocation during parallel training of 64
ML models.

Figure 4.9: Workload 4 - Containers, CPU and memory allocation during parallel training of
128 ML models.

68 Chapter 4. Evaluation

4.6 Performance Evaluation

Because the framework was designed to deal with the execution of multiple ML workflows in

parallel, one experiment was carried out to validate the performance of the ML4IoT framework

in this scenario. In the experiment, performance was evaluated by measuring the latency of

rendering online predictions as workload was increased. Five workloads were assessed in this

experiment, with the number of online ML workflows running in parallel varying from 4 to 64.

The online ML workflows and workloads used in this experiment are described below.

• Online machine workflows. Each workflow was configured to deploy one previously

trained ML model to render predictions using online IoT data. Two types of model

were presented in the workflows, RF and LSTM. Each online ML workflow executed a

prediction cycle every 10 minutes, which involved the creation of one online dataset, the

application of preprocessing tasks (five for energy and four for the traffic dataset), and the

prediction of new values using one trained ML model.

• Workloads. Table 4.10 describes the five workloads used in this experiment. The

workloads contained an equal number of workflows running LSTM and RF models and

rendering predictions on energy and traffic IoT data. For example, in workload 1, the

four workflows are defined with different configurations formed by combining the two

types of models (LSTM and RF) applied to the two types of IoT data (energy and traffic).

The same combination was then applied to the other workloads. From workload 1 to 5,

the number of online ML workflows running in parallel increased from 4 to 64. At each

prediction cycle of an online ML workflow, one online dataset was created, and four or

five preprocessing tasks were executed, depending on the dataset (five for energy and

four for traffic). One trained ML model also rendered predictions for each online dataset.

For this reason, from workload 1 to 5, the number of datasets increased from 4 to 64 and

the amount of preprocessing tasks varied from 18 to 288. Moreover, the number of ML

4.6. Performance Evaluation 69

models rendering online predictions in parallel went from 4 to 64 from workload 1 to

workload 5.

Workload No Workflows Datasets Preprocessing Models
1 4 4 18 4

2 8 8 36 8

3 16 16 72 16

4 32 32 144 32

5 64 64 288 64

Table 4.10: Description of workloads used in the performance evaluation.

4.6.1 Results and Discussion

The boxplot presented presented in Figure 4.10 illustrates the latency time of the online ML

workflows. The latency of online ML workflows measures the time spent over the execution of

a complete prediction cycle, including selection of the online data, application of preprocessing

tasks, and prediction of new values.

The median of the latency time of the online ML workflows started at 97.56 seconds when 8

online ML workflows were running in parallel and increased to a maximum of 185.30 seconds

when 64 online ML workflows were being executed at the same time. According to the results,

the median latency time increased by 89.93% from 4 to 64 workflows, although the number

of workflows in parallel increased by 400%. Figure 4.10 also shows that when the number of

online ML workflows running in parallel was 64, the long tail issue started to appear in the

latency distributions. The long tail issue is the term used to identify latency measures that refer

to the higher percentiles in comparison to the average latency time. For example, in Figures

4.10 and 4.11, the scatter points represent the latency measures in the 99th percentile.

70 Chapter 4. Evaluation

Figure 4.10: Latency of online ML workflows in different workloads.

Figure 4.11: Latency time of model inference step during the execution of online ML workflows.

Figure 4.11 depicts a boxplot of the latency time for model inference only, which is a step

performed during execution of online ML workflows, in which trained ML models render

predictions taking as input previously processed datasets. One observed trend was that the

greater the number of online ML workflows running in parallel, the longer the model inference

step takes, and the greater is the number of results with values that are well beyond the average,

as shown by the long tail issue in the graph. However, the results demonstrated that increasing the

number of online ML workflows has little effect on model inference latency. For example, when

64 online ML workflows were running in parallel, only 1.01% of the model inference latency

measures were in this worst-case scenario (99th percentile). Overall, results demonstrated that

the performance of rendering online predictions is not affected when 64 models are deployed in

parallel to infer new information using online IoT data. Also, the experiment has shown that the

framework can manage the execution of multiple online ML workflows in parallel, and it can be

4.7. Summary 71

used to deploy trained ML models to render predictions using online IoT data.

4.7 Summary

In this chapter, the evaluation of the framework described in Chapters 3 was presented. More-

over, the implementation details of the experiments as well as the results were discussed. The

orchestration capabilities of the framework were assessed in the first evaluation, which demon-

strated that the framework could define ML workflows and automate their execution to train

ML models, and use these models to infer online IoT data. In the elasticity and performance

evaluations, experiments were conducted to demonstrate how the framework could deal with

the execution of multiple ML workflows in parallel.

Chapter 5

Conclusions and Future Work

This chapter presents a concluding summary based on the contributions of the proposed Machine

Learning Framework for IoT data (ML4IoT). Also, a description of possible future research

involving ML4IoT and its components is provided.

5.1 Conclusions

This research proposed the Machine Learning Framework for IoT data ((ML4IoT)) to solve

the challenges involved in the integration of big data enabling tools and ML frameworks to

provide a unified platform to execute end-to-end ML workflows in IoT data. Its main goal is

to provide orchestration services for the training and the inference of ML models on IoT data,

which allows the automated execution of ML workflows on top of various big data tools and

ML frameworks. The main contributions of this work are presented below:

• The proposed framework enables the definition and execution of end-to-end ML work-

flows using REST APIs. The definition of ML workflows using high-level APIs abstracts

from users and developers the complexities of creating complex and repetitive code to in-

tegrate the numerous tools required to apply ML to IoT data. Two types of ML workflows

can be created in this framework: batch and online ML workflows. These workflows

72

5.1. Conclusions 73

are composed of a set of configurations that define the sequential tasks and parameters

required to train and deploy ML models to infer online IoT data.

• The ML4IoT was designed to use container-based components to provide a convenient

mechanism for horizontally and independently scaling the ML4IoT to execute multiple

ML workflows in parallel. The automated execution of the ML workflows is orchestrated

by backend services provided by the ML4IoT , which uses containerized microservices to

execute the tasks defined in the workflows. Furthermore, the use of containers provides

process isolation between different ML workflows and ensures that a single workflow

failure does not affect the execution of other workflows running in parallel.

• To address the common production issues faced during the development of ML appli-

cations, the proposed framework used microservices architecture to bring flexibility,

reusability, and extensibility to the framework. In the ML4IoT , ML frameworks and

libraries used to build ML models can be added, replaced, or updated without affecting

the other components of the framework. Also, splitting the design of ML workflows into

small and specialized microservices facilitates the reuse of these software components.

Lastly, it contributes to the extensibility of the ML4IoT, because when the design of ML

workflows is divided into well-defined components, it creates natural points of extension

for new functionalities.

To demonstrate the applicability of ML4IoT framework, a prototype system was built to

perform three evaluations using two real-world IoT data. Experimental results have shown that

the ML4IoT can simplify the definition and automate the execution of ML workflows that run

on top of heterogeneous big data tools and ML frameworks. Also, results demonstrated the

ML4IoT can manage the orchestration of ML workflows by providing scalability and elasticity

to allow the execution of multiple ML workflows in parallel.

74 Chapter 5. Conclusions and FutureWork

5.2 Future Work

This section presents several areas of future work that can be explored:

• Automated machine learning. Future work will consider extending the proposed frame-

work to automate the selection and the tuning of ML models, which is a method known

as Automatic ML (AutoML) [104]. Given the ever-increasing number of ML algorithms

being developed, selecting the appropriate algorithm is an essential factor to achieve

optimal performance during the training of ML models. Also, ML models often depend

on hyper-parameters that require extensive fine-tuning. In this way, the framework can be

extended to provide model customization by automatically fine-tuning ML models and

choosing the ones that perform best. Automation of tuning and selection of ML models

will allow the creation of high-performing ML workflows in IoT data.

• Online Machine learning. Most of IoT data are produced in real-time. Also, in some

cases, there are no historical IoT data to train ML models using past data. Future work

will explore the creation of ML models using just online IoT data. The online training of

ML models also includes the adoption of methods to provide faster retrain of the models,

which can help the model to keep our models accurate as the IoT data changes. This

approach will expand the applicability of the framework and can help improve the overall

efficiency of ML models on IoT data.

• ML-as-a-Service. Another interesting future work would be to explore the use of this

framework as part of cloud computing services. The deployment of ML applications

always needs to deal with conflicting priorities such as speed, uptime, and costs. In this

way, the ML4IoT can be implemented in cloud services as ML-as-a-Service platform,

which can bring benefits such as preventing downtime, optimizing data center costs, and

reducing response latency. Also, the implementation of the ML4IoT can be explored in

multi-cloud services to avoid vendor lock-in and take advantage of cloud providers price

5.2. FutureWork 75

competition.

• Data Validation. A future project is to implement a layer for data validation, which

would provide automated methods for exploring and preprocessing IoT data. Because

of big data characteristics of IoT data, in some situations, it is impossible to inspect and

choose the best techniques to improve the data quality manually. Automating the data

exploration and the selection of data preprocessing tasks can amplify the productivity of

the process of using ML to IoT data.

• Resources Management. Future work will consider other ways to manage the use of

computational resources. In the current design, the allocation of computational resources

is configured programmatically for each task executed during the orchestration of the ML

frameworks. One approach is to introduce the use of advanced algorithms or even ML to

define the allocation of computation resources, which could provide better scalability and

elasticity capabilities to the ML4IoT .

• Extensibility. In this study, the proposed framework was evaluated in two types of IoT

data by using two different ML frameworks and one type of real-world problem (time-

series prediction). Future work will validate the framework with a broad range of IoT data,

new ML frameworks, and different real-world problems such as classification, anomaly

detection, and so on.

Bibliography

[1] C. Nguyen, Y. Wang, and H. N. Nguyen, “Random forest classifier combined with feature

selection for breast cancer diagnosis and prognostic,” Journal of Biomedical Science and

Engineering, vol. 6, no. 05, p. 551, 2013.

[2] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural

networks,” in Acoustics, speech and signal processing (icassp), 2013 ieee international

conference on, pp. 6645–6649, IEEE, 2013.

[3] S. B. Taieb, G. Bontempi, A. F. Atiya, and A. Sorjamaa, “A review and comparison

of strategies for multi-step ahead time series forecasting based on the nn5 forecasting

competition,” Expert systems with applications, vol. 39, no. 8, pp. 7067–7083, 2012.

[4] C. Pahl, “Containerization and the paas cloud,” IEEE Cloud Computing, vol. 2, no. 3,

pp. 24–31, 2015.

[5] M. Hung, “Leading the iot [ONLINE].” http://www.gartner.com/imagesrv/

books/iot/iotEbook_digital.pdf. Accessed: 2019-01-17.

[6] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi, M. Shafie-Khah, and

P. Siano, “Iot-based smart cities: a survey,” in Environment and Electrical Engineering

(EEEIC), 2016 IEEE 16th International Conference on, pp. 1–6, IEEE, 2016.

76

BIBLIOGRAPHY 77

[7] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet of things for smart home:

Challenges and solutions,” Journal of Cleaner Production, vol. 140, pp. 1454–1464,

2017.

[8] L. Li, K. Ota, and M. Dong, “When weather matters: Iot-based electrical load forecasting

for smart grid,” IEEE Communications Magazine, vol. 55, no. 10, pp. 46–51, 2017.

[9] D. Crankshaw and J. Gonzalez, “Prediction-serving systems,” Queue, vol. 16, no. 1, p. 70,

2018.

[10] D. E. O’Leary, “Big data, the internet of thingsand the internet of signs,” Intelligent

Systems in Accounting, Finance and Management, vol. 20, no. 1, pp. 53–65, 2013.

[11] G. M. D’silva, A. Khan, S. Bari, et al., “Real-time processing of iot events with historic

data using apache kafka and apache spark with dashing framework,” in Recent Trends

in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE

International Conference on, pp. 1804–1809, IEEE, 2017.

[12] L. M. Pham, “A big data analytics framework for iot applications in the cloud,” VNU

Journal of Science: Computer Science and Communication Engineering, vol. 31, no. 2,

2016.

[13] A. Vera-Baquero and R. Colomo-Palacios, “Big-data analysis of process performance: A

case study of smart cities,” in Big Data in Engineering Applications, pp. 41–63, Springer,

2018.

[14] A. Pal and M. Kumar, “Pattern generation from event oriented sensor data using dis-

tributed sensor transaction model,” in Proceedings of the 4th Multidisciplinary Interna-

tional Social Networks Conference on ZZZ, p. 36, ACM, 2017.

78 BIBLIOGRAPHY

[15] P. M. Kumar and U. D. Gandhi, “A novel three-tier internet of things architecture with

machine learning algorithm for early detection of heart diseases,” Computers & Electrical

Engineering, vol. 65, pp. 222–235, 2018.

[16] Y.-S. Kang, I.-H. Park, J. Rhee, and Y.-H. Lee, “Mongodb-based repository design for

iot-generated rfid/sensor big data,” IEEE Sensors Journal, vol. 16, no. 2, pp. 485–497,

2016.

[17] S. Wu, L. Bao, Z. Zhu, F. Yi, and W. Chen, “Storage and retrieval of massive heteroge-

neous iot data based on hybrid storage,” in 2017 13th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 2982–2987,

IEEE, 2017.

[18] A. Mahgoub, S. Ganesh, F. Meyer, A. Grama, and S. Chaterji, “Suitability of nosql sys-

temscassandra and scylladbfor iot workloads,” in Communication Systems and Networks

(COMSNETS), 2017 9th International Conference on, pp. 476–479, IEEE, 2017.

[19] S. Dharur and K. Swaminathan, “Efficient surveillance and monitoring using the elk stack

for iot powered smart buildings,” in 2018 2nd International Conference on Inventive

Systems and Control (ICISC), IEEE, 2018.

[20] K. Grolinger, W. A. Higashino, A. Tiwari, and M. A. Capretz, “Data management in cloud

environments: Nosql and newsql data stores,” Journal of Cloud Computing: advances,

systems and applications, vol. 2, no. 1, p. 22, 2013.

[21] M. M. Rathore, A. Ahmad, and A. Paul, “Iot-based smart city development using big

data analytical approach,” in Automatica (ICA-ACCA), IEEE International Conference

on, pp. 1–8, IEEE, 2016.

[22] Y. N. Malek, A. Kharbouch, H. El Khoukhi, M. Bakhouya, V. De Florio, D. El Ouadghiri,

S. Latre, and C. Blondia, “On the use of iot and big data technologies for real-time

BIBLIOGRAPHY 79

monitoring and data processing,” Procedia Computer Science, vol. 113, pp. 429–434,

2017.

[23] M. Falkenthal, U. Breitenbücher, K. Képes, F. Leymann, M. Zimmermann, M. Christ,

J. Neuffer, N. Braun, and A. W. Kempa-Liehr, “Opentosca for the 4th industrial revolution:

automating the provisioning of analytics tools based on apache flink,” in Proceedings of

the 6th International Conference on the Internet of Things, pp. 179–180, ACM, 2016.

[24] M. El Moulat, O. Debauche, S. Mahmoudi, L. A. Brahim, P. Manneback, and F. Lebeau,

“Monitoring system using internet of things for potential landslides,” Procedia Computer

Science, vol. 134, pp. 26–34, 2018.

[25] P. Ta-Shma, A. Akbar, G. Gerson-Golan, G. Hadash, F. Carrez, and K. Moessner, “An

ingestion and analytics architecture for iot applied to smart city use cases,” IEEE Internet

of Things Journal, vol. 5, no. 2, pp. 765–774, 2018.

[26] J. Kwok and Y. Sun, “A smart iot-based irrigation system with automated plant recognition

using deep learning,” in Proceedings of the 10th International Conference on Computer

Modeling and Simulation, pp. 87–91, ACM, 2018.

[27] M. Sewak and S. Singh, “Iot and distributed machine learning powered optimal state

recommender solution,” in Internet of Things and Applications (IOTA), International

Conference on, pp. 101–106, IEEE, 2016.

[28] C. Ruiz, S. Pan, A. Sadde, H. Y. Noh, and P. Zhang, “Posepair: pairing iot devices through

visual human pose analysis: demo abstract,” in Proceedings of the 17th ACM/IEEE

International Conference on Information Processing in Sensor Networks, pp. 144–145,

IEEE Press, 2018.

[29] J. A. C. Soto, M. Jentsch, D. Preuveneers, and E. Ilie-Zudor, “Ceml: Mixing and moving

complex event processing and machine learning to the edge of the network for iot

80 BIBLIOGRAPHY

applications,” in Proceedings of the 6th International Conference on the Internet of

Things, pp. 103–110, ACM, 2016.

[30] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J.-S. Oh, “Semisupervised deep rein-

forcement learning in support of iot and smart city services,” IEEE Internet of Things

Journal, vol. 5, no. 2, pp. 624–635, 2018.

[31] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kel-

ley, J. B. Hamrick, J. Grout, S. Corlay, et al., “Jupyter notebooks-a publishing format for

reproducible computational workflows.,” in ELPUB, pp. 87–90, 2016.

[32] Y. Cheng, F. C. Liu, S. Jing, W. Xu, and D. H. Chau, “Building big data processing

and visualization pipeline through apache zeppelin,” in Proceedings of the Practice and

Experience on Advanced Research Computing, p. 57, ACM, 2018.

[33] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,

M. Young, J.-F. Crespo, and D. Dennison, “Hidden technical debt in machine learning

systems,” in Advances in neural information processing systems, pp. 2503–2511, 2015.

[34] “Uber Michelangelo [ONLINE].” https://eng.uber.com/michelangelo. Accessed:

2019-01-17.

[35] “Airbnb Bighead [ONLINE].” https://databricks.com/session/

bighead-airbnbs-end-to-end-machine-learning-platform. Accessed:

2019-01-17.

[36] “Netflix Meson [ONLINE].” https://medium.com/netflix-techblog/

meson-workflow-orchestration-for-netflix-recommendations-fc932625c1d9.

Accessed: 2019-01-17.

[37] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,

V. Jain, L. Koc, et al., “Tfx: A tensorflow-based production-scale machine learning plat-

BIBLIOGRAPHY 81

form,” in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 1387–1395, ACM, 2017.

[38] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,

B. Jia, Y. Jia, A. Kalro, et al., “Applied machine learning at facebook: A datacenter

infrastructure perspective,” in High Performance Computer Architecture (HPCA), 2018

IEEE International Symposium on, pp. 620–629, IEEE, 2018.

[39] “Amazon AWS IoT Analytics [ONLINE].” https://aws.amazon.com/

iot-analytics. Accessed: 2019-01-17.

[40] “Google Cloud IoT Core [ONLINE].” https://cloud.google.com/iot-core. Ac-

cessed: 2019-01-17.

[41] “Microsoft Azure IoT Edge [ONLINE].” https://azure.microsoft.com/en-ca/

services/iot-edge. Accessed: 2019-01-17.

[42] N. Gondchawar and R. Kawitkar, “Iot based smart agriculture,” International Journal of

Advanced Research in Computer and Communication Engineering (IJARCCE), vol. 5,

no. 6, pp. 177–181, 2016.

[43] J. Meehan, C. Aslantas, S. Zdonik, N. Tatbul, and J. Du, “Data ingestion for the connected

world.,” in CIDR, 2017.

[44] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “Iot-based big data storage systems in cloud

computing: Perspectives and challenges,” IEEE Internet of Things Journal, vol. 4, no. 1,

pp. 75–87, 2017.

[45] S. Yang, “Iot stream processing and analytics in the fog,” IEEE Communications Maga-

zine, vol. 55, no. 8, pp. 21–27, 2017.

[46] M. R. Bashir and A. Q. Gill, “Towards an iot big data analytics framework: Smart

buildings systems,” in High Performance Computing and Communications; IEEE 14th

82 BIBLIOGRAPHY

International Conference on Smart City; IEEE 2nd International Conference on Data

Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th International Conference

on, pp. 1325–1332, IEEE, 2016.

[47] R. Young, S. Fallon, and P. Jacob, “Dynamic collaboration of centralized & edge pro-

cessing for coordinated data management in an iot paradigm,” in 2018 IEEE 32nd

International Conference on Advanced Information Networking and Applications (AINA),

pp. 694–701, IEEE, 2018.

[48] J. Wan, S. Tang, D. Li, S. Wang, C. Liu, H. Abbas, and A. V. Vasilakos, “A manufacturing

big data solution for active preventive maintenance,” IEEE Transactions on Industrial

Informatics, vol. 13, no. 4, pp. 2039–2047, 2017.

[49] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT

press, 2018.

[50] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

[51] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[52] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[53] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural nets

and problem solutions,” International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[54] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Convolutional

lstm network: A machine learning approach for precipitation nowcasting,” in Advances

in neural information processing systems, pp. 802–810, 2015.

[55] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang, et al.,

“Ese: Efficient speech recognition engine with sparse lstm on fpga,” in Proceedings of

BIBLIOGRAPHY 83

the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,

pp. 75–84, ACM, 2017.

[56] C. Finn and S. Levine, “Deep visual foresight for planning robot motion,” in Robotics

and Automation (ICRA), 2017 IEEE International Conference on, pp. 2786–2793, IEEE,

2017.

[57] J. Lin and A. Kolcz, “Large-scale machine learning at twitter,” in Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data, pp. 793–804,

ACM, 2012.

[58] D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow management:

From process modeling to workflow automation infrastructure,” Distributed and parallel

Databases, vol. 3, no. 2, pp. 119–153, 1995.

[59] G. C. Tiao and R. S. Tsay, “Some advances in non-linear and adaptive modelling in

time-series,” Journal of forecasting, vol. 13, no. 2, pp. 109–131, 1994.

[60] A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Methodology for long-term

prediction of time series,” Neurocomputing, vol. 70, no. 16-18, pp. 2861–2869, 2007.

[61] S. Newman, Building microservices: designing fine-grained systems. ” O’Reilly Media,

Inc.”, 2015.

[62] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization:

a performance comparison,” in Cloud Engineering (IC2E), 2015 IEEE International

Conference on, pp. 386–393, IEEE, 2015.

[63] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, “Open issues in

scheduling microservices in the cloud,” IEEE Cloud Computing, vol. 3, no. 5, pp. 81–88,

2016.

84 BIBLIOGRAPHY

[64] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange, and C. A. De Rose, “Per-

formance evaluation of container-based virtualization for high performance computing

environments,” in Parallel, Distributed and Network-Based Processing (PDP), 2013 21st

Euromicro International Conference on, pp. 233–240, IEEE, 2013.

[65] A. Sill, “The design and architecture of microservices,” IEEE Cloud Computing, vol. 3,

no. 5, pp. 76–80, 2016.

[66] W. Wang, J. Gao, M. Zhang, S. Wang, G. Chen, T. K. Ng, B. C. Ooi, J. Shao, and

M. Reyad, “Rafiki: machine learning as an analytics service system,” Proceedings of the

VLDB Endowment, vol. 12, no. 2, pp. 128–140, 2018.

[67] Y. Lee, A. Scolari, B.-G. Chun, M. D. Santambrogio, M. Weimer, and M. Interlandi,

“{PRETZEL}: Opening the black box of machine learning prediction serving systems,” in

13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}

18), pp. 611–626, 2018.

[68] “ML.NET [ONLINE].” https://dotnet.microsoft.com/apps/

machinelearning-ai/ml-dotnet. Accessed: 2019-01-17.

[69] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica, “Clipper:

A low-latency online prediction serving system.,” in NSDI, pp. 613–627, 2017.

[70] S. Zhao, M. Talasila, G. Jacobson, C. Borcea, S. A. Aftab, and J. F. Murray, “Packaging

and sharing machine learning models via the acumos ai open platform,” in 2018 17th IEEE

International Conference on Machine Learning and Applications (ICMLA), pp. 841–846,

IEEE, 2018.

[71] “Apache Prediction I/O.” https://predictionio.apache.org/. Accessed: 2019-

01-17.

BIBLIOGRAPHY 85

[72] “IBM Watson IoT Platform [ONLINE].” https://www.ibm.com/

internet-of-things/spotlight/watson-iot-platform. Accessed: 2019-

01-17.

[73] G. D. F. Morales and A. Bifet, “Samoa: scalable advanced massive online analysis.,”

Journal of Machine Learning Research, vol. 16, no. 1, pp. 149–153, 2015.

[74] S. Hido, S. Tokui, and S. Oda, “Jubatus: An open source platform for distributed online

machine learning,” in NIPS 2013 Workshop on Big Learning, Lake Tahoe, 2013.

[75] “Apache Spark.” https://spark.apache.org. Accessed: 2019-01-17.

[76] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[77] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,

S. Venkataraman, M. J. Franklin, et al., “Apache spark: a unified engine for big data

processing,” Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[78] C. Cecchinel, F. Fouquet, S. Mosser, and P. Collet, “Leveraging live machine learning and

deep sleep to support a self-adaptive efficient configuration of battery powered sensors,”

Future Generation Computer Systems, vol. 92, pp. 225–240, 2019.

[79] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural infor-

mation processing systems, pp. 2672–2680, 2014.

[80] S.-F. Chou, H.-W. Yen, and A.-C. Pang, “A rem-enabled diagnostic framework in cellular-

based iot networks,” IEEE Internet of Things Journal, 2019.

[81] M. Shen, X. Tang, L. Zhu, X. Du, and M. Guizani, “Privacy-preserving support vector

machine training over blockchain-based encrypted iot data in smart cities,” IEEE Internet

of Things Journal, 2019.

86 BIBLIOGRAPHY

[82] P. Sun, J. Li, M. Z. A. Bhuiyan, L. Wang, and B. Li, “Modeling and clustering attacker

activities in iot through machine learning techniques,” Information Sciences, 2018.

[83] L. Spitzner, Honeypots: tracking hackers, vol. 1. Addison-Wesley Reading, 2003.

[84] H. Haskamp, M. Meyer, R. Möllmann, F. Orth, and A. W. Colombo, “Benchmarking of

existing opc ua implementations for industrie 4.0-compliant digitalization solutions,” in

Proc. of the 15th IEEE Intern. Conf. on Ind. Info.(INDIN), Emden, Germany, pp. 589–594,

2017.

[85] A. Javed, H. Larijani, and A. Wixted, “Improving energy consumption of a commercial

building with iot and machine learning,” IT Professional, vol. 20, no. 5, pp. 30–38, 2018.

[86] Y. Yang, F. Nan, P. Yang, Q. Meng, Y. Xie, D. Zhang, and K. Muhammad, “Gan-based

semi-supervised learning approach for clinical decision support in health-iot platform,”

IEEE Access, 2019.

[87] D. Preuveneers, Y. Berbers, and W. Joosen, “Samurai: A batch and streaming context

architecture for large-scale intelligent applications and environments,” Journal of Ambient

Intelligence and Smart Environments, vol. 8, no. 1, pp. 63–78, 2016.

[88] N. Marz and J. Warren, Big Data: Principles and best practices of scalable realtime data

systems. Manning Publications Co., 2015.

[89] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,

K. Gade, M. Fu, J. Donham, et al., “Storm@ twitter,” in Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, pp. 147–156, ACM, 2014.

[90] M. Strohbach, H. Ziekow, V. Gazis, and N. Akiva, “Towards a big data analytics frame-

work for iot and smart city applications,” in Modeling and processing for next-generation

big-data technologies, pp. 257–282, Springer, 2015.

BIBLIOGRAPHY 87

[91] A. Lheureux, K. Grolinger, H. F. Elyamany, and M. A. Capretz, “Machine learning with

big data: Challenges and approaches,” IEEE Access, vol. 5, no. 5, pp. 777–797, 2017.

[92] N. Mishra, C.-C. Lin, and H.-T. Chang, “A cognitive adopted framework for iot big-data

management and knowledge discovery prospective,” International Journal of Distributed

Sensor Networks, vol. 11, no. 10, p. 718390, 2015.

[93] O. B. Sezer, E. Dogdu, M. Ozbayoglu, and A. Onal, “An extended iot framework with

semantics, big data, and analytics,” in Big Data (Big Data), 2016 IEEE International

Conference on, pp. 1849–1856, IEEE, 2016.

[94] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, “M2m: From mobile to

embedded internet,” IEEE Communications Magazine, vol. 49, no. 4, 2011.

[95] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al., “Tensorflow: a system for large-scale machine learning.,” in

OSDI, vol. 16, pp. 265–283, 2016.

[96] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, et al., “Mllib: Machine learning in apache spark,” The Journal of

Machine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,”

Journal of machine learning research, vol. 12, no. Oct, 2011.

[98] Y. Shichkina, M. Kupriyanov, and S. Moldachev, “Application of docker swarm cluster

for testing programs, developed for system of devices within paradigm of internet of

things,” in Journal of Physics: Conference Series, vol. 1015, p. 032129, IOP Publishing,

2018.

88 BIBLIOGRAPHY

[99] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,” IEEE Cloud

Computing, vol. 1, no. 3, pp. 81–84, 2014.

[100] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log

processing,” in Proceedings of the NetDB, pp. 1–7, 2011.

[101] “Apache hadoop [ONLINE].” https://hadoop.apache.org/. Accessed: 2019-01-

17.

[102] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops,” IEEE Software, vol. 33,

no. 3, pp. 94–100, 2016.

[103] “Madrid Council Traffic Data.” http://informo.munimadrid.es/informo/

tmadrid/pm.xml. Accessed: 2019-01-17.

[104] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, “Transfer learning with neural automl,”

in Advances in Neural Information Processing Systems, pp. 8366–8375, 2018.

Curriculum Vitae

Name: José Miguel Alves

Post-Secondary Western University
Education and London, ON - Canada
Degrees MESc in Software Engineering

2017 - 2019

University of São Paulo
São Carlos, SP - Brazil
BSc in Information Systems
2005 - 2010

Related Work Teaching Assistant
Experience: Western University

2017 - 2019

Data Engineer and Data Scientist
Ícaro Technologies (Brazil)
2013 - 2017

Software Engineer
Ícaro Technologies (Brazil)
2010 - 2013

89

	Orchestration of machine learning workflows on Internet of Things data
	Recommended Citation

	tmp.1556662478.pdf.6FHn7

