3 research outputs found

    Taxonomy for Humans or Computers? Cognitive Pragmatics for Big Data

    Get PDF
    Criticism of big data has focused on showing that more is not necessarily better, in the sense that data may lose their value when taken out of context and aggregated together. The next step is to incorporate an awareness of pitfalls for aggregation into the design of data infrastructure and institutions. A common strategy minimizes aggregation errors by increasing the precision of our conventions for identifying and classifying data. As a counterpoint, we argue that there are pragmatic trade-offs between precision and ambiguity that are key to designing effective solutions for generating big data about biodiversity. We focus on the importance of theory-dependence as a source of ambiguity in taxonomic nomenclature and hence a persistent challenge for implementing a single, long-term solution to storing and accessing meaningful sets of biological specimens. We argue that ambiguity does have a positive role to play in scientific progress as a tool for efficiently symbolizing multiple aspects of taxa and mediating between conflicting hypotheses about their nature. Pursuing a deeper understanding of the trade-offs and synthesis of precision and ambiguity as virtues of scientific language and communication systems then offers a productive next step for realizing sound, big biodiversity data services

    High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    Get PDF
    The publication of this article was funded by SCOAP 3 . Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities

    High Performance Numerical Computing for High Energy Physics: A New Challenge for Big Data Science

    Get PDF
    Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities
    corecore