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Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions,
high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods
represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance
computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these
experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy
physics (HEP) analyzed from two perspectives: numerical methods and high performance computing.The computational methods
presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle
physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods
produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming
paradigms, and storage capabilities.

1. Introduction

High Energy Physics (HEP) experiments are probably the
main consumers of High Performance Computing (HPC) in
the area of e-Science, considering numerical methods in real
experiments and assisted analysis using complex simulation.
Starting with quarks discovery in the last century to Higgs
Boson in 2012 [1], all HEP experiments were modeled using
numerical algorithms: numerical integration, interpolation,
random number generation, eigenvalues computation, and
so forth. Data collection from HEP experiments generates a
huge volume, with a high velocity, variety, and variability and
passes the common upper bounds to be considered Big Data.
The numerical experiments using HPC for HEP represent a
new challenge for Big Data Science.

Theoretical research in HEP is related to matter (funda-
mental particles and Standard Model) and Universe forma-
tion basic knowledge. Beyond this, the practical research in
HEP has led to the development of new analysis tools (syn-
chrotron radiation, medical imaging or hybrid models [2],

wavelets-computational aspects [3]), new processes (cancer
therapy [4], food preservation, or nuclear waste treatment),
or even the birth of a new industry (Internet) [5].

This paper analyzes two aspects: the computationalmeth-
ods used in HEP (Monte Carlo methods and simulations,
Markovian Monte Carlo, unfolding methods in particle
physics, kernel estimation, and RandomMatrix Theory) and
the challenges and requirements for ICT systems to deal with
processing of Big Data generated by HEP experiments and
simulations.

The motivation of using numerical methods in HEP
simulations is based on special problems which can be for-
mulated using integral or differential-integral equations (or
systems of such equations), like quantum chromodynamics
evolution of parton distributions inside a proton which can
be described by the Gribov-Lipatov-Altarelli-Parisi (GLAP)
equations [6], estimation of cross section for a typical
HEP interaction (numerical integration problem), and data
representation using histograms (numerical interpolation
problem). Numerical methods used for solving differential
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Figure 1: General approach of event generation, detection, and reconstruction.

equations or integrals are based on classical quadratures and
Monte Carlo (MC) techniques.These allow generating events
in terms of particle flavors and four-momenta, which is par-
ticularly useful for experimental applications. For example,
MC techniques for solving the GLAP equations are based
on simulated Markov chains (random walks), which have
the advantage of filtering and smoothing the state vector for
estimating parameters.

In practice, several MC event generators and simulation
tools are used. For example, HERWIG (http://projects
.hepforge.org/herwig/) project considers angular-ordered
parton shower, cluster hadronization (the tool is imple-
mented using Fortran), PYTHIA (http://www.thep.lu.se/
torbjorn/Pythia.html) project is oriented on dipole-
type parton shower and string hadronization (the tool
is implemented in Fortran and C++), and SHERPA
(http://projects.hepforge.org/sherpa/) considers dipole-type
parton shower and cluster hadronization (the tool is
implemented in C++). An important tool forMC simulations
is GATE (GEANT4 Application for Tomographic Emission),
a generic simulation platform based on GEANT4. GATE
provides new features for nuclear imaging applications
and includes specific modules that have been developed to
meet specific requirements encountered in SPECT (Single
Photon Emission Tomography) and PET (Positron Emission
Tomography).

The main contributions of this paper are as follows:
(i) introduction and analysis of most important model-

ing methods used in High Energy Physics;
(ii) identifying and describing of the computational

numerical methods for High Energy Physics;
(iii) presentation of the main challenges for Big Data

processing.
The paper is structured as follows. Section 2 introduces

the computational methods used in HEP and describes the
performance evaluation of parallel numerical algorithms.
Section 3 discusses the new challenge for Big Data Science
generated by HEP and HPC. Section 4 presents the conclu-
sions and general open issues.

2. Computational Methods Used in
High Energy Physics

Computational methods are used in HEP in parallel with
physical experiments to generate particle interactions that

are modeled using vector of events. This section presents
general approach of event generation, simulation methods
based on Monte Carlo algorithms, Markovian Monte Carlo
chains, methods that describe unfolding processes in particle
physics, Random Matrix Theory as support for particle
spectrum, and kernel estimation that produce continuous
estimates of the parent distribution from the empirical prob-
ability density function. The section ends with performance
analysis of parallel numerical algorithms used in HEP.

2.1. General Approach of Event Generation. Themost impor-
tant aspect in simulation for HEP experiments is event gener-
ation. This process can be split into multiple steps, according
to physical models. For example, structure of LHC (Large
Hadron Collider) events: (1) hard process; (2) parton shower;
(3) hadronization; (4) underlying event. According to official
LHC website (http://home.web.cern.ch/about/computing):
“approximately 600 million times per second, particles collide
within the LHC. . .Experiments at CERN generate colossal
amounts of data. The Data Centre stores it, and sends it
around the world for analysis.” The analysis must produce
valuable data and the simulation results must be correlated
with physical experiments.

Figure 1 presents the general approach of event gener-
ation, detection, and reconstruction. The physical model is
used to create simulation process that produces different type
of events, clustered in vector of events (e.g., the fourth type of
events in LHC experiments).

In parallel, the real experiments are performed. The
detectors identify the most relevant events and, based on
reconstruction techniques, vector of events is created. The
detectors can be real or simulated (software tools) and
the reconstruction phase combines real events with events
detected in simulation. At the end, the final result is compared
with the simulation model (especially with generated vectors
of events). The model can be corrected for further experi-
ments. The goal is to obtain high accuracy and precision of
measured and processed data.

Software tools for event generation are based on ran-
dom number generators. There are three types of random
numbers: truly random numbers (from physical generators),
pseudorandom numbers (from mathematical generators),
and quasirandom numbers (special correlated sequences of
numbers, used only for integration). For example, numerical
integration using quasirandom numbers usually gives faster
convergence than the standard integrationmethods based on
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(1) procedure Random Generator Poisson(𝜇)
(2) 𝑛𝑢𝑚𝑏𝑒𝑟 ← −1;
(3) 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 1.0;
(4) 𝑞 ← exp {−𝜇};
(5) while 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 > 𝑞 do
(6) 𝑟𝑛𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑅𝑁𝐷() ;
(7) 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ∗ 𝑟𝑛𝑑 𝑛𝑢𝑚𝑏𝑒𝑟;
(8) 𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑛𝑢𝑚𝑏𝑒𝑟 + 1;
(9) end while
(10) return number;
(11) end procedure

Algorithm 1: Randomnumber generation for Poisson distribution usingmany randomgenerated numbers with normal distribution (RND).

quadratures. In event generation pseudorandomnumbers are
used most often.

Themost popular HEP application uses Poisson distribu-
tion combined with a basic normal distribution. The Poisson
distribution can be formulated as

𝑃 [𝑋 = 𝑘] =
𝜇
𝑘

𝑘!
exp {−𝜇} , 𝑘 = 0, 1, . . . , (1)

with 𝐸(𝑘) = 𝑉(𝑘) = 𝜇 (𝑉 is variance and 𝐸 is expectation
value). Having a uniform random number generator called
RND() (Random based on Normal Distribution) we can use
the following two algorithms for event generation techniques.

The result of running Algorithms 1 and 2 to generate
around 10

6 random numbers is presented in Figure 2. In
general, the second algorithm has better result for Poisson
distribution. General recommendation for HEP experiments
indicates the use of popular random number generators like
TRNG (True RandomNumber Generators), RANMAR (Fast
Uniform Random Number Generator used in CERN exper-
iments), RANLUX (algorithm developed by Luscher used
by Unix random number generators), and Mersenne Twister
(the “industry standard”). Random number generators pro-
vided with compilers, operating system, and programming
language libraries can have serious problem because they are
based on system clock and suffer from lack of uniformity
of distribution for large amounts of generated numbers and
correlation of successive values.

The art of event generation is to use appropriate combina-
tions of various randomnumber generationmethods in order
to construct an efficient event generation algorithm being
solution to a given problem in HEP.

2.2. Monte Carlo Simulation and Markovian Monte Carlo
Chains in HEP. In general, a Monte Carlo (MC) method is
any simulation technique that uses random numbers to solve
a well-defined problem, 𝑃. If 𝐹 is a solution of the problem
𝑃 (e.g., 𝐹 ∈ 𝑅

𝑛 or 𝐹 has a Boolean value), we define 𝐹, an
estimation of 𝐹, as 𝐹 = 𝑓({𝑟1, 𝑟2, . . . , 𝑟𝑛}, . . .), where {𝑟𝑖}1≤𝑖≤𝑛
is a random variable that can take more than one value and
for which any value that will be taken cannot be predicted in
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Figure 2: General approach of event generation, detection, and
reconstruction.

advance. If 𝜌(𝑟) is the probability density function, 𝜌(𝑟)𝑑𝑟 =
𝑃[𝑟 < 𝑟 < 𝑟 + 𝑑𝑟], the cumulative distributed function is

𝐶 (𝑟) = ∫
𝑟

−∞

𝜌 (𝑥) 𝑑𝑥 ⇒ 𝜌 (𝑟) =
𝑑𝐶 (𝑟)

𝑑𝑟
. (2)

𝐶(𝑟) is a monotonically nondecreasing function with all
values in [0, 1]. The expectation value is

𝐸 (𝑓) = ∫𝑓 (𝑟) 𝑑𝐶 (𝑟) = ∫𝑓 (𝑟) 𝜌 (𝑟) 𝑑𝑟. (3)

And the variance is

𝑉 (𝑓) = 𝐸[𝑓 − 𝐸 (𝑓)]
2
= 𝐸 (𝑓

2
) − 𝐸
2
(𝑓) . (4)

2.2.1. Monte Carlo Event Generation and Simulation. To
define a MC estimator the “Law of Large Numbers (LLN)”
is used. LLN can be described as follows: let one choose 𝑛
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(1) procedure Random Generator Poisson RND(𝜇, 𝑟)
(2) 𝑛𝑢𝑚𝑏𝑒𝑟 ← 0;
(3) 𝑞 ← exp {−𝜇};
(4) 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 𝑞;
(5) 𝑝 ← 𝑞;
(6) while 𝑟 > 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 do
(7) 𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑛𝑢𝑚𝑏𝑒𝑟 + 1;
(8) 𝑝 ← 𝑝 ∗ 𝜇/𝑛𝑢𝑚𝑏𝑒𝑟;
(9) 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 ← 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑜𝑟 + 𝑝;
(10) end while
(11) return number;
(12) end procedure

Algorithm 2: Random number generation for Poisson distribution using one random generated number with normal distribution.

numbers 𝑟𝑖 randomly, with the probability density function
uniform on a specific interval (𝑎, 𝑏), each 𝑟𝑖 being used to
evaluate 𝑓(𝑟𝑖). For large 𝑛 (consistent estimator),

1

𝑛

𝑛

∑
𝑖=1

𝑓 (𝑟𝑖) → 𝐸 (𝑓) =
1

𝑏 − 𝑎
∫
𝑏

𝑎

𝑓 (𝑟) 𝑑𝑟. (5)

The properties of a MC estimator are being normally
distributed (with Gaussian density); the standard deviation is
𝜎 = √𝑉(𝑓)/𝑛; MC is unbiased for all 𝑛 (the expectation value
is the real value of the integral); the estimator is consistent if
𝑉(𝑓) < ∞ (the estimator converges to the true value of the
integral for every large 𝑛); a sampling phase can be applied
to compute the estimator if we do not know anything about
the function𝑓; it is just suitable for integration.The sampling
phase can be expressed, in a stratified way, as

∫
𝑏

𝑎

𝑓 (𝑟) 𝑑𝑟 = ∫
𝑟
1

𝑎

𝑓 (𝑟) 𝑑𝑟 + ∫
𝑟
2

𝑟
1

𝑓 (𝑟) 𝑑𝑟 + ⋅ ⋅ ⋅ + ∫
𝑏

𝑟
𝑛

𝑓 (𝑟) 𝑑𝑟.

(6)

MC estimations and MC event generators are necessary
tools in most of HEP experiments being used at all their
steps: experiments preparation, simulation running, and data
analysis.

An example of MC estimation is the Lorentz invariant
phase space (LIPS) that describes the cross section for a
typical HEP process with 𝑛 particle in the final state.

Consider

𝜎𝑛 ∼ ∫ |𝑀|
2
𝑑𝑅𝑛, (7)

where 𝑀 is the matrix describing the interaction between
particles and 𝑑𝑅𝑛 is the element of LIPS. We have the
following estimation:

𝑅𝑛 (𝑃, 𝑝1, 𝑝2, . . . , 𝑝𝑛)

= ∫ 𝛿
(4)
(𝑃 −

𝑛

∑
𝑘=1

𝑝𝑘)

𝑛

∏
𝑘=1

(𝛿 (𝑝
2

𝑘
− 𝑚
2

𝑘
)Θ (𝑝

0

𝑘
) 𝑑
4
𝑝𝑘) ,

(8)
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𝜇+(q1)

𝜇−(q2)

z
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Φ

Figure 3: Example of particle interaction: 𝑒(𝑝
1
) + 𝑒−(𝑝2) →

𝜇+(𝑞1)𝜇
−(𝑞2).

where 𝑃 is total four-momentum of the 𝑛-particle system; 𝑝𝑘
and𝑚𝑘 are four-momenta andmass of the final state particles;
𝛿(4)(𝑃−∑

𝑛

𝑘=1
𝑝𝑘) is the total energymomentum conservation;

𝛿(𝑝2
𝑘
− 𝑚2
𝑘
) is the on-mass-shell condition for the final state

system. Based on the integration formula

∫𝛿 (𝑝
2

𝑘
− 𝑚
2

𝑘
)Θ (𝑝

0

𝑘
) 𝑑
4
𝑝𝑘 =

𝑑3𝑝𝑘

2𝑝0
𝑘

, (9)

obtain the iterative form for cross section:

𝑅𝑛 (𝑃, 𝑝1, 𝑝2, . . . , 𝑝𝑛)

= ∫𝑅𝑛−1 (𝑃 − 𝑝𝑛, 𝑝1, 𝑝2, . . . , 𝑝𝑛−1)
𝑑3𝑝𝑛

2𝑝0
𝑛

,
(10)

which can be numerical integrated by using the recurrence
relation. As result, we can construct a general MC algorithm
for particle collision processes.

Example 1. Let us consider the interaction: 𝑒+𝑒− → 𝜇+𝜇−

where Higgs boson contribution is numerically negligible.
Figure 3 describes this interaction (Φ is the azimuthal angle,
𝜃 the polar angle, and 𝑝1, 𝑝2, 𝑞1, 𝑞2 are the four-momenta for
particles).

The cross section is

𝑑𝜎 =
𝛼
2

4𝑠
[𝑊1 (𝑠) (1 + cos2𝜃) +𝑊2 (𝑠) cos 𝜃] 𝑑Ω, (11)
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where 𝑑Ω = 𝑑 cos 𝜃𝑑Φ, 𝛼 = 𝑒2/4𝜋 (fine structure constant),
𝑠 = (𝑝0

1
+ 𝑝0
2
)
2 is the center of mass energy squared, and

𝑊1(𝑠) and 𝑊2(𝑠) are constant functions. For pure processes
we have𝑊1(𝑠) = 1 and𝑊2(𝑠) = 0, and the total cross section
becomes

𝜎 = ∫
2𝜋

0

𝑑Φ∫
1

−1

𝑑 cos 𝜃 𝑑2𝜎

𝑑Φ𝑑 cos 𝜃
. (12)

We introduce the following notation:

𝜌 (cos 𝜃,Φ) = 𝑑
2𝜎

𝑑Φ𝑑 cos 𝜃
, (13)

and let us consider 𝜌(cos 𝜃,Φ) an approximation of
𝜌(cos 𝜃,Φ). Then �̃� = ∬𝑑Φ𝑑 cos 𝜃𝜌. Now, we can compute

𝜎 = ∫
2𝜋

0

𝑑Φ∫
1

−1

𝑑 cos 𝜃𝜌 (cos 𝜃,Φ)

= ∫
2𝜋

0

𝑑Φ∫
1

−1

𝑑 cos 𝜃𝑤 (cos 𝜃, Φ) 𝜌 (cos 𝜃, Φ)

≈ ⟨𝑤⟩𝜌 ∫
2𝜋

0

𝑑Φ∫
1

−1

𝑑 cos 𝜃𝜌 (cos 𝜃,Φ) = �̃�⟨𝑤⟩𝜌,

(14)

where𝑤(cos 𝜃,Φ) = 𝜌(cos 𝜃, Φ)/𝜌(cos 𝜃, Φ) and ⟨𝑤⟩𝜌 is the
estimation of 𝑤 based on 𝜌. Here, the MC estimator is

⟨𝑤⟩MC =
1

𝑛

𝑛

∑
𝑖=1

𝑤𝑖, (15)

and the standard deviation is

𝑠MC = (
1

𝑛(𝑛 − 1)

𝑛

∑
𝑖=1

(𝑤𝑖 − ⟨𝑤⟩MC)
2
)

1/2

. (16)

The final numerical result based on MC estimator is

𝜎MC = �̃�⟨𝑤⟩MC ± �̃�𝑠MC. (17)

As we can show, the principle of a Monte Carlo estimator
in physics is to simulate the cross section in interaction and
radiation transport knowing the probability distributions (or
an approximation) governing each interaction of elementary
particles.

Based on this result, the Monte Carlo algorithm used to
generate events is as follows. It takes as input 𝜌(cos 𝜃,Φ)
and in a main loop considers the following steps: (1) gen-
erate (cos 𝜃, Φ) peer from 𝜌; (2) compute four-momenta
𝑝1, 𝑝2, 𝑞1, 𝑞2; (3) compute 𝑤 = 𝜌/𝜌. The loop can be stopped
in the case of unweighted events, and we will stay in the loop
for weighted events. As output, the algorithm returns four-
momenta for particle for weighted events and four-momenta
and an array of weights for unweighted events.Themain issue
is how to initialize the input of the algorithm. Based on 𝑑𝜎

formula (for 𝑊1(𝑠) = 1 and 𝑊2(𝑠) = 0), we can consider as
input 𝜌(cos 𝜃,Φ) = (𝛼2/4𝑠)(1 + cos2𝜃). Then �̃� = 4𝜋𝛼2/3𝑠.

In HEP theoretical predictions used for particle collision
processes modeling (as shown in presented example) should

be provided in terms of Monte Carlo event generators, which
directly simulate these processes and can provide unweighted
(weight = 1) events. A good Monte Carlo algorithm should
be used not only for numerical integration [7] (i.e., pro-
vide weighted events) but also for efficient generation of
unweighted events, which is very important issue for HEP.

2.2.2. Markovian Monte-Carlo Chains. A classical Monte
Carlo method estimates a function 𝐹 with 𝐹 by using a
randomvariable.Themain problemwith this approach is that
we cannot predict any value in advance for a randomvariable.
In HEP simulation experiments the systems are described
in states [8]. Let us consider a system with a finite set of
possible states 𝑆1, 𝑆2, . . ., and 𝑆𝑡 the state at the moment 𝑡. The
conditional probability is defined as

𝑃 (𝑆𝑡 = 𝑆𝑗 | 𝑆𝑡
1

= 𝑆𝑖
1

, 𝑆𝑡
2

= 𝑆𝑖
2

, . . . , 𝑆𝑡
𝑛

= 𝑆𝑖
𝑛

) , (18)

where the mappings (𝑡1, 𝑖1), . . . ,(𝑡𝑛, 𝑖𝑛) can be interpreted as
the description of system evolution in time by specifying a
specific state for each moment of time.

The system is a Markov chain if the distribution of
𝑆𝑡 depends only on immediate predecessor 𝑆𝑡−1 and it is
independent of all previous states as follows:

𝑃 (𝑆𝑡 = 𝑆𝑗 | 𝑆𝑡−1 = 𝑆𝑖
𝑡−1

, . . . , 𝑆𝑡
2

= 𝑆𝑖
2

, 𝑆𝑡
1

= 𝑆𝑖
1

)

= 𝑃 (𝑆𝑡 = 𝑆𝑗 | 𝑆𝑡−1 = 𝑆𝑖
𝑡−1

) .

(19)

To generate the time steps (𝑡1, 𝑡2, . . . , 𝑡𝑛) we use the
probability of a single forward Markovian step given by 𝑝(𝑡 |
𝑡𝑛) with the property ∫

∞

𝑡
𝑛

𝑝(𝑡 | 𝑡𝑛)𝑑𝑡 = 1 and we define
𝑝(𝑡) = 𝑝(𝑡 | 0). The 1-dimensional Monte Carlo Markovian
Algorithm used to generate the time steps is presented in
Algorithm 3.

The main result of Algorithm 3 is that 𝑃(𝑡max) follows a
Poisson distribution:

𝑃𝑁 = ∫
𝑡max

0

𝑝 (𝑡1 | 𝑡0) 𝑑𝑡1 × ∫
𝑡max

𝑡
1

𝑝 (𝑡2 | 𝑡1) 𝑑𝑡2

× ⋅ ⋅ ⋅ × ∫
𝑡max

𝑡
𝑁−1

𝑝 (𝑡𝑁 | 𝑡𝑁−1) 𝑑𝑡𝑁

×∫
∞

𝑡max

𝑝 (𝑡𝑁+1 | 𝑡𝑁) 𝑑𝑡𝑁+1 =
1

𝑁!
(𝑡max)

𝑁
𝑒
−𝑡max .

(20)

We can consider the 1-dimensional Monte Carlo Marko-
vian Algorithm as a method used to iteratively generate the
systems’ states (codified as a Markov chain) in simulation
experiments. According to the Ergodic Theorem for Markov
chains, the chain defined has a unique stationary probability
distribution [9, 10].

Figures 4 and 5 present the running of Algorithm 3.
According to different values of parameter 𝑠 used to generate
the next step, the results are very different, for 1000 iterations.
Figure 4 for 𝑠 = 1 shows a profile of the type of noise. For
𝑠 = 10, 100, 1000 profile looks like some of the information
is filtered and lost. The best results are obtained for 𝑠 = 0.01
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(1) Generate 𝑡1 according with 𝑝 (𝑡1) = 𝑝 (𝑡1 | 𝑡0 = 0)

(2) if 𝑡
1
< 𝑡max then ⊳ Generate the initial state.

(3) 𝑃𝑁≥1 = ∫
𝑡max
0

𝑝 (𝑡1 | 𝑡0) 𝑑𝑡1; ⊳ Compute the initial probability.
(4) Retain 𝑡1;
(5) end if
(6) if 𝑡1 > 𝑡max then ⊳ Discard all generated and computed data.
(7) 𝑁 = 0; 𝑃0 = ∫

∞

𝑡max
𝑝 (𝑡1 | 𝑡0) 𝑑𝑡1 = 𝑒−𝑡max ;

(8) Delete 𝑡1;
(9) EXIT. ⊳ The algorithm ends here.
(10) end if
(11) 𝑖 = 2;
(12) while (1) do ⊳ Infinite loop until a successful EXIT.
(13) Generate 𝑡𝑖 according with 𝑝 (𝑡𝑖 | 𝑡𝑖−1)
(14) if 𝑡

𝑖
< 𝑡max then ⊳ Generate a new state and new probability.

(15) 𝑃𝑁≥𝑖 = ∫
𝑡max
𝑡𝑖

𝑝 (𝑡𝑖 | 𝑡𝑖−1) 𝑑𝑡𝑖;
(16) Retain 𝑡𝑖;
(17) end if
(18) if 𝑡𝑖 > 𝑡max then ⊳ Discard all generated and computed data.
(19) 𝑁 = 𝑖 − 1; 𝑃𝑖 = ∫

∞

𝑡max
𝑝 (𝑡𝑖 | 𝑡𝑖−1) 𝑑𝑡𝑖;

(20) Retain (𝑡1, 𝑡2, . . . , 𝑡𝑖−1); Delete 𝑡𝑖;
(21) EXIT. ⊳ The algorithm ends here.
(22) end if
(23) 𝑖 = 𝑖 + 1;
(24) end while

Algorithm 3: 1-Dimensional Monte Carlo Markovian Algorithm.

and 𝑠 = 0.1 and the generated values can be easily accepted
for MC simulation in HEP experiments.

Figure 5 shows the acceptance rate of values generated
with parameter 𝑠used in the algorithm.Andparameter values
are correlated with Figure 4. Results in Figure 5 show that
the acceptance rate decreases rapidly with increasing value of
parameter 𝑠. The conclusion is that values must be kept small
to obtain meaningful data. A correlation with the normal
distribution is evident, showing that a small value for the
mean square deviation provides useful results.

2.2.3. Performance of Numerical Algorithms Used in MC
Simulations. Numerical methods used to compute MC esti-
mator use numerical quadratures to approximate the value
of the integral for function 𝑓 on a specific domain by a
linear compilation of function values and weights {𝑤𝑖}1≤𝑖≤𝑚
as follows:

∫
𝑏

𝑎

𝑓 (𝑟) 𝑑𝑟 =

𝑚

∑
𝑖=1

𝑤𝑖𝑓 (𝑟𝑖) . (21)

We can consider a consistent MC estimator 𝑎 a clas-
sical numerical quadrature with all 𝑤𝑖 = 1. Efficiency of
integration methods for 1 dimension and for 𝑑 dimensions
is presented in Table 1. We can conclude that quadrature
methods are difficult to apply in many dimensions for variate
integration domains (regions) and the integral is not easy to
be estimated.

Table 1: Efficiency of integration methods for 1 dimension and for
𝑑 dimensions.

Method 1 dimension 𝑑 dimensions
Monte Carlo 𝑛−1/2 𝑛−1/2

Trapezoidal rule 𝑛−2 𝑛−2/𝑑

Simpson’s rule 𝑛−4 𝑛−4/𝑑

𝑚-points Gauss rule (𝑚 < 𝑛) 𝑛−2𝑚 𝑛−2𝑚/𝑑

Aspractical example, in a typical high-energy particle col-
lision there can bemany final-state particles (even hundreds).
If we have 𝑛 final state particle, we face with 𝑑 = 3𝑛 − 4

dimensional phase space. As numerical example, for 𝑛 = 4

we have 𝑑 = 8 dimensions, which is very difficult approach
for classical numerical quadratures.

Full decomposition integration volume for one double
number (10 Bytes) per volume unit is 𝑛𝑑 × 10 Bytes. For the
example considered with 𝑑 = 8 and 𝑛 = 10 divisions for
interval [0, 1] we have, for one numerical integration,

𝑛
𝑑
× 10Bytes = 108 × 10

10243
𝐺Bytes ≈ 0.93𝐺Bytes. (22)

Considering 106 events per second, one integration per event,
the data produced in one hour will be ≈3197.4 𝑃Bytes.
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Figure 4: Example of 1-dimensional Monte Carlo Markovian
algorithm.

The previous assumption is only for multidimensional
arrays. But due to the factorization assumption,
𝑝(𝑟1, 𝑟2, . . . , 𝑟𝑛) = 𝑝(𝑟1)𝑝(𝑟2) ⋅ ⋅ ⋅ 𝑝(𝑟𝑛), we obtain for one
integration

𝑛 × 𝑑 × 10 Bytes = 800 Bytes, (23)

which means ≈2.62 𝑇Bytes of data produce for one hour of
simulations.

2.3. Unfolding Processes in Particle Physics and Kernel Estima-
tion in HEP. In particle physics analysis we have two types
of distributions: true distribution (considered in theoretical
models) and measured distribution (considered in experi-
mental models, which are affected by finite resolution and
limited acceptance of existing detectors). A HEP interaction
process starts with a true knows distribution and generate
a measured distribution, corresponding to an experiment of
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Figure 5: Analysis of acceptance rate for 1-dimensionalMonte Carlo
Markovian algorithm for different 𝑠 values.

a well-confirmed theory. An inverse process starts with a
measured distribution and tries to identify the true distri-
bution. These unfolding processes are used to identify new
theories based on experiments [11].

2.3.1. Unfolding Processes in Particle Physics. The theory of
unfolding processes in particle physics is as follows [12]. For a
physics variable 𝑡 we have a true distribution 𝑓(𝑡)mapped in
𝑥 and an 𝑛-vector of unknowns and a measured distribution
𝑔(𝑠) (for a measured variable 𝑠) mapped in an 𝑚-vector of
measured data. A responsematrix𝐴 ∈ 𝑅

𝑚×𝑛 encodes aKernel
function𝐾(𝑠, 𝑡) describing the physical measurement process
[12–15].The direct and inverse processes are described by the
Fredholm integral equation [16] of the first kind, for a specific
domainΩ,

∫
Ω

𝐾 (𝑠, 𝑡) 𝑓 (𝑡) 𝑑𝑡 = 𝑔 (𝑠) . (24)

In particle physics the Kernel function 𝐾(𝑠, 𝑡) is usually
known fromaMonteCarlo sample obtained from simulation.
A numerical solution is obtained using the following linear
equation: 𝐴𝑥 = 𝑏. Vectors 𝑥 and 𝑦 are assumed to
be 1-dimensional in theory, but they can be multidimen-
sional in practice (considering multiple independent linear
equations). In practice, also the statistical properties of the
measurements are well known and often they follow the
Poisson statistics [17]. To solve the linear systems we have
different numerical methods.

First method is based on linear transformation 𝑥 = 𝐴
#𝑦.

If 𝑚 = 𝑛 then 𝐴
#
= 𝐴
−1 and we can use direct Gaussian

methods, iterative methods (Gauss-Siedel, Jacobi or SOR), or
orthogonal methods (based on Householder transformation,
Givens methods, or Gram-Schmidt algorithm). If 𝑚 > 𝑛

(the most frequent scenario) we will construct the matrix
𝐴

# = (𝐴𝑇𝐴)
−1
𝐴𝑇 (called pseudoinverse Penrose-Moore). In

these cases the orthogonalmethods offer very good and stable
numerical solutions.
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Second method considers the singular value decomposi-
tion:

𝐴 = 𝑈Σ𝑉
𝑇
=

𝑛

∑
𝑖=1

𝜎𝑖𝑢𝑖V
𝑇

𝑖
, (25)

where𝑈 ∈ 𝑅𝑚×𝑛 and𝑉 ∈ 𝑅𝑛×𝑛 arematrices with orthonormal
columns and the diagonal matrix Σ = diag{𝜎1, . . . , 𝜎𝑛} =

𝑈𝑇𝐴𝑉. The solution is

𝑥 = 𝐴
#
𝑦 = 𝑉Σ

−1
(𝑈
𝑇
𝑦) =

𝑛

∑
𝑖=1

1

𝜎𝑖
(𝑢
𝑇

𝑖
𝑦) V𝑖 =

𝑛

∑
𝑖=1

1

𝜎𝑖
𝑐𝑖V𝑖, (26)

where 𝑐𝑖 = 𝑢𝑇
𝑖
𝑦, 𝑖 = 1, . . . , 𝑛, are called Fourier coefficients.

2.3.2. RandomMatrix Theory. Analysis of particle spectrum
(e.g., neutrino spectrum) faces with Random Matrix Theory
(RMT), especially if we consider anarchic neutrino masses.
The RMT means the study of the statistical properties of
eigenvalues of very large matrices [18]. For an interaction
matrix 𝐴 (with size 𝑁), where 𝐴 𝑖𝑗 is an independent dis-
tributed random variable and 𝐴𝐻 is the complex conjugate
and transposematrix, we define𝑀 = 𝐴+𝐴

𝐻, which describes
a Gaussian Unitary Ensemble (GUE). The GUE properties
are described by the probability distribution 𝑃(𝑀)𝑑𝑀: (1)
it is invariant under unitary transformation, 𝑃(𝑀)𝑑𝑚 =

𝑃(𝑀
)𝑑𝑀, where 𝑀 = 𝑈𝐻𝑀𝑈, 𝑈 is a Hermitian matrix

(𝑈𝐻𝑈 = 𝐼); (2) the elements of 𝑀 matrix are statistically
independent,𝑃(𝑀) = ∏

𝑖≤𝑗
𝑃𝑖𝑗(𝑀𝑖𝑗); and (3) thematrix𝑀 can

be diagonalized as𝑀 = 𝑈𝐷𝑈𝐻, where𝑈 = diag{𝜆1, . . . , 𝜆𝑁},
𝜆𝑖 is the eigenvalue of𝑀 and 𝜆𝑖 ≤ 𝜆𝑗 if 𝑖 < 𝑗

Propability (2): 𝑃 (𝑀) 𝑑𝑀 ∼ 𝑑𝑀 exp {−𝑁
2
𝑇𝑟 (𝑀

𝐻
𝑀)} ;

Propability (3): 𝑃 (𝑀) 𝑑𝑀 ∼ 𝑑𝑈∏
𝑖

𝑑𝜆𝑖∏
𝑖<𝑗

(𝜆𝑖 − 𝜆𝑗)
2

× exp{−𝑁
2
∑
𝑖

(𝜆
2

𝑖
)} .

(27)
The numerical methods used for eigenvalues computa-

tion are the QR method and Power methods (direct and
indirect). The QR method is a numerical stable algorithm
and Power method is an iterative one. The RMT can be used
for many body systems, quantum chaos, disordered systems,
quantum chromodynamics, and so forth.

2.3.3. Kernel Estimation in HEP. Kernel estimation is a very
powerful solution and relevant method for HEP when it
is necessary to combine data from heterogeneous sources
like MC datasets obtained by simulation and from Standard
Model expectation, obtained from real experiments [19]. For
a set of data {𝑥𝑖}1≤𝑖≤𝑛 with a constant bandwidth ℎ (the
difference between two consecutive data values), called the
smoothing parameter, we have the estimation

𝑓 (𝑥) =
1

𝑛ℎ

𝑛

∑
𝑖=1

𝐾(
𝑥 − 𝑥𝑖

ℎ
) , (28)

where𝐾 is an estimator. For example, a Gauss estimator with
mean 𝜇 and standard deviation 𝜎 is

𝐾 (𝑥) =
1

𝜎√2𝜋
exp{−

(𝑥 − 𝜇)
2

2𝜎2
} , (29)

and has the following properties: positive definite and
infinitely differentiable (due to the exp function), and it can
be defined for an infinite supports (𝑛 → ∞). The kernel is a
nonparametricmethod,whichmeans thatℎ is independent of
dataset and for large amount of normally distributed data we
can find a value for ℎ that minimizes the integrated squared
error of 𝑓(𝑥). This value for bandwidth is computed as

ℎ
∗
= (

4

3𝑛
)
1/5

𝜎. (30)

The main problem in Kernel Estimation is that the
set of data {𝑥𝑖}1≤𝑖≤𝑛 is not normally distributed and in
real experiments the optimal bandwidth it is not known.
An improvement of presented method considers adaptive
Kernel Estimation proposed by Abramson [20], where ℎ𝑖 =
ℎ/√𝑓(𝑥𝑖) and 𝜎 are considered global qualities for dataset.
The new form is

𝑓𝑎 (𝑥) =
1

𝑛

𝑛

∑
𝑖=1

1

ℎ𝑖
𝐾(

𝑥 − 𝑥𝑖

ℎ𝑖
) , (31)

and the local bandwidth value that minimizes the integrated
squared error of 𝑓𝑎(𝑥) is

ℎ
∗

𝑖
= (

4

3𝑛
)
1/5

√
𝜎

𝑓 (𝑥𝑖)
, (32)

where 𝑓 is the normal estimator.
Kernel estimation is used for event selection to confidence

level evaluation, for example, in Markovian Monte Carlo
chains or in selection of neural network output used in
experiments for reconstructed Higgs mass. In general, the
main usage of Kernel estimation in HEP is searching for new
particle, by finding relevant data in a large dataset.

A method based on Kernel estimation is the graphical
representation of datasets using advanced shifted histogram
algorithm (ASH). This is a numerical interpolation for large
datasets with themain aimof creating a set of 𝑛𝑏𝑖𝑛histograms
𝐻 = {𝐻𝑖}, with the same bin-width ℎ. Algorithm 4
presents the steps of histograms generation starting with a
specific interval [𝑎, 𝑏], a number of points 𝑛 in this interval,
and a number of bins and a number of values used for
kernel estimation, 𝑚. Figure 6 shows the results of kernel
estimation if function 𝑓 = −(1/2)𝑥

2 on [0, 1] and graphical
representation with a different number of bins. The values
on vertical axis are aggregated in step 17 of Algorithm 4 and
increase with the number of bins.

2.3.4. Performance of Numerical Algorithms Used in Particle
Physics. All operations used in presented methods for par-
ticle physics (Unfolding Processes, Random Matrix Theory,
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(1) procedure ASH (𝑎, 𝑏, 𝑛, 𝑥, 𝑛bin, 𝑚, 𝑓𝑚)
(2) 𝛿 = (𝑏 − 𝑎) /𝑛bin; ℎ = 𝑚𝛿;
(3) for 𝑘 = 1 . . . 𝑛bin do
(4) V𝑘 = 0; 𝑦𝑘 = 0;
(5) end for
(6) for 𝑖 = 1 . . . 𝑛 do
(7) 𝑘 = (𝑥𝑖 − 𝑎) /𝛿 + 1;
(8) if 𝑘 ∈ [1, 𝑛bin] then
(9) V𝑘 = V𝑘 + 1;
(10) end if
(11) end for
(12) for 𝑘 = 1 . . . 𝑛bin do
(13) if V𝑘 = 0 then
(14) 𝑘 = 𝑘 + 1;
(15) end if
(16) for 𝑖 = max {1, 𝑘 − 𝑚 + 1} . . .min {𝑛bin, 𝑘 + 𝑚 − 1} do
(17) 𝑦𝑖 = 𝑦𝑖 + V𝑘𝑓𝑚 (𝑖 − 𝑘);
(18) end for
(19) end for
(20) for 𝑘 = 1 . . . 𝑛bin do
(21) 𝑦𝑘 = 𝑦𝑘/(𝑛ℎ) ;
(22) 𝑡𝑘 = 𝑎 + (𝑘 − 0.5) 𝛿;
(23) end for
(24) return {𝑡𝑘}1≤𝑘≤𝑛bin, {𝑦𝑘}1≤𝑘≤𝑛bin.
(25) end procedure

Algorithm 4: Advanced shifted histogram (1D algorithm).

and Kernel Estimation) can be reduced to scalar products,
matrix-vector products, and matrix-matrix products. In [21]
the design of new standard for the BLAS (Basic Linear
Algebra Subroutines) in C language by extension of precision
is described. This permits higher internal precision and
mixed input/output types. The precision allows implemen-
tation of some algorithms that are simpler, more accurate,
and sometimes faster than possible without these features.
Regarding the precision of numerical computing, Dongarra
and Langou established in [22] an upper bound for the
residual check for 𝐴𝑥 = 𝑦 system, with 𝐴 ∈ 𝑅

𝑛×𝑛 a dense
matrix. The residual check is defined as

𝑟∞ =

𝐴𝑥 − 𝑦
∞

𝑛𝜖 (‖𝐴‖∞‖𝑥‖∞ +
𝑦
∞)

< 16, (33)

where 𝜖 is the relative machine precision for the IEEE
representation standard; ‖𝑦‖

∞
is the infinite normof a vector:

‖𝑦‖
∞

= max1≤𝑖≤𝑛{|𝑦𝑖|}; and ‖𝐴‖∞ is the infinite norm of a
matrix ‖𝐴‖∞ = max1≤𝑖≤𝑛{∑

𝑛

𝑗=1
|𝐴 𝑖𝑗|}.

Figure 7 presents the graphical representation of Dongar-
ras result (using logarithmic scales) for simple and double
precision. For simple precision, 𝜖𝑠 = 2−24, for all 𝑛 ≥ 1.05 ×

106 the residual check is always lower than imposed upper
bound, similarly for double precision with 𝜖𝑑 = 2

−53, for all
𝑛 ≥ 5.63 × 1014. If matrix size is greater than these values, it
will not be possible to detect if the solution is correct or not.
These results establish upper bounds for data volume in this
model.

In a single-processor system, the complexity of algo-
rithms depends only on the problem size, 𝑛. We can assume

𝑇(𝑛) = Θ(𝑓(𝑛)), where 𝑓(𝑛) is a fundamental function
(𝑓(𝑛) ∈ {1, 𝑛

𝛼, 𝑎𝑛, log 𝑛,√𝑛, . . .}). In parallel systems (mul-
tiprocessor systems, with 𝑝 processors) we have the serial
processing time 𝑇

∗(𝑛) = 𝑇1(𝑛) and parallel processing
time 𝑇𝑝(𝑛). The performance of parallel algorithms can be
analyzed using speed-up, efficiency, and isoefficiencymetrics.

(i) The speed-up, 𝑆(𝑝), represents how a parallel algo-
rithm is faster than a corresponding sequential algo-
rithm.The speed-up is defined as 𝑆(𝑝) = 𝑇1(𝑛)/𝑇𝑝(𝑛).
There are special bounds for speed-up [23]: 𝑆(𝑝) ≤

𝑝𝑝/(𝑝 + 𝑝 − 1), where 𝑝 = 𝑇1/𝑇∞ is the average
parallelism (the average number of busy processors
given unbounded number of processors). Usually
𝑆(𝑝) ≤ 𝑝, but under special circumstances the
speed-up can be 𝑆(𝑝) > 𝑝 [24]. Another upper
bound is established by the Amdahls law: 𝑆(𝑝) =

(𝑠 + ((1 − 𝑠)/𝑝))
1/2

≤ 1/𝑠 where 𝑠 is the fraction of
a program that is sequential. The upper bound is
considered for a 0 time of parallel fraction.

(ii) The efficiency is the average utilization of 𝑝 proces-
sors: 𝐸(𝑝) = 𝑆(𝑝)/𝑝.

(iii) The isoefficiency is the growth rate of workload
𝑊𝑝(𝑛) = 𝑝𝑇𝑝(𝑛) in terms of number of processors to
keep efficiency fixed. If we consider𝑊1(𝑛)−𝐸𝑊𝑝(𝑛) =
0 for any fixed efficiency 𝐸 we obtain 𝑝 = 𝑝(𝑛). This
means thatwe can establish a relation between needed
number of processors and problem size. For example
for the parallel sum of 𝑛 numbers using 𝑝 processors
we have 𝑛 ≈ 𝐸(𝑛 + 𝑝 log𝑝), so 𝑛 = Θ(𝑝 log𝑝).
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Figure 6: Example of advanced shifted histogram algorithm run-
ning for different bins: 10, 100, and 1000.
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Figure 7: Residual check analysis for solving 𝐴𝑥 = 𝑦 system in
HPL2.0 using simple and double precision representation.

Numerical algorithms use for implementation a hyper-
cube architecture. We analyze the performance of different
numerical operations using the isoefficiency metric. For the
hypercube architecture a simple model for intertask commu-
nication considers 𝑇com = 𝑡𝑠 +𝐿𝑡𝑤 where 𝑡𝑠 is the latency (the
time needed by a message to cross through the network), 𝑡𝑤

Table 2: Isoefficiency for a hypercube architecture: 𝑛 = Θ(𝑝 log𝑝)
and 𝑛 = Θ(𝑝(log𝑝)2). We marked with (∗) the limitations imposed
by Formula (33).

Scenario Architecture size (𝑝) 𝑛 = Θ(𝑝 log𝑝) 𝑛 = Θ(𝑝(log𝑝)2)
1 101 1.0 × 101 1.00 × 101

2 10
2

2.0 × 10
2

8.00 × 10
2

3 103 3.0 × 103 2.70 × 104

4 104 4.0 × 104 6.40 × 105
∗

5 10
5

5.0 × 10
5∗

1.25 × 10
7

6 10
6

6.0 × 10
6

2.16 × 10
8

7 107 7.0 × 107 3.43 × 109

8 108 8.0 × 108 5.12 × 1010

9 10
9

9.0 × 10
9

7.29 × 10
11

is the time needed to send a word (1/𝑡𝑤 is called bandwidth),
and 𝐿 is the message length (expressed in number of words).
The word size depends on processing architecture (usually it
is two bytes).We define 𝑡𝑐 as the processing time per word for
a processor. We have the following results.

(i) External product 𝑥𝑦𝑇. The isoefficiency is written as

𝑡𝑐𝑛 ≈ 𝐸 (𝑡𝑐𝑛 + (𝑡𝑠 + 𝑡𝑤) 𝑝 log𝑝) ⇒ 𝑛 = Θ (𝑝 log𝑝) . (34)

Parallel processing time is 𝑇𝑝 = 𝑡𝑐𝑛/𝑝+(𝑡𝑠 +𝑡𝑤) log𝑝.
The optimality is computed using

𝑑𝑇𝑝

𝑑𝑝
= 0 ⇒ −𝑡𝑐

𝑛

𝑝2
+
𝑡𝑠 + 𝑡𝑤

𝑝
= 0 ⇒ 𝑝 ≈

𝑡𝑐𝑛

𝑡𝑠 + 𝑡𝑤
. (35)

(ii) Scalar product (internal product) 𝑥𝑇𝑦 = ∑
𝑛

𝑖=1
𝑥𝑖𝑦𝑖.

The isoefficiency is written as

𝑡𝑐𝑛
2
≈ 𝐸(𝑡𝑐𝑛

2
+
𝑡𝑠

2
𝑝 log𝑝 +

𝑡𝑤

2
𝑛√𝑝 log𝑝)

⇒ 𝑛 = Θ(𝑝(log𝑝)2) .
(36)

(iii) Matrix-vector product 𝑦 = 𝐴𝑥, 𝑦𝑖 = ∑
𝑛

𝑗=1
𝐴 𝑖𝑗𝑥𝑗. The

isoefficiency is written as

𝑡𝑐𝑛
2
≈ 𝐸 (𝑡𝑐𝑛

2
+ 𝑡𝑠𝑝 log𝑝 + 𝑡𝑤𝑛√𝑝 log𝑝) ⇒ 𝑛

= Θ(𝑝(log𝑝)2) .
(37)

Table 2 presented the amount of data that can be pro-
cessed for a specific size.The cases that meet the upper bound
𝑛 ≥ 1.05 × 10

6 are marked with (∗). To keep the efficiency
high for a specific parallel architecture, HPC algorithms for
particle physics introduce upper limits for the amount of data,
which means that we have also an upper bound for Big Data
volume in this case.

The factors that determine the efficiency of parallel algo-
rithms are task balancing (work-load distribution between
all used processors in a system → to be maximized);
concurrency (the number/percentage of processors working
simultaneously → to be maximized); and overhead (extra
work for introduce by parallel processing that does not appear
in serial processing → to be minimized).
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Figure 8: Processing flows for HEP experiments.

3. New Challenges for Big Data Science

There are a lot of applications that generate Big Data, like
social networking profiles, social influence, SaaS & Cloud
Apps, public web information, MapReduce scientific exper-
iments and simulations (especially HEP simulations), data
warehouse, monitoring technologies, and e-government ser-
vices. Data grow rapidly, since applications produce contin-
uously increasing volumes of both unstructured and struc-
tured data. The impact on the approach to data processing,
transfer, and storage is the need to reevaluate the way and
solutions to better answer the users’ needs [25]. In this con-
text, scheduling models and algorithms for data processing
have an important role becoming a new challenge for Big
Data Science.

HEP applications consider both experimental data (that
are application with TB of valuable data) and simulation
data (with data generated using MC based on theoretical
models). The processing phase is represented by modeling
and reconstruction in order to find properties of observed
particles (see Figure 8).Then, the data are analyzed a reduced
to a simple statistical distribution. The comparison of results
obtainedwill validate how realistic is a simulation experiment
and validate it for use in other new models.

Since we face a large variety of solutions for specific
applications and platforms, a thorough and systematic anal-
ysis of existing solutions for scheduling models, methods,
and algorithms used in Big Data processing and storage
environments is needed. The challenges for scheduling
impose specific requirements in distributed systems: the
claims of the resource consumers, the restrictions imposed by
resource owners, the need to continuously adapt to changes
of resources’ availability, and so forth. We will pay special
attention to Cloud Systems and HPC clusters (datacenters)
as reliable solutions for Big Data [26]. Based on these
requirements, a number of challenging issues are maximiza-
tion of system throughput, sites’ autonomy, scalability, fault-
tolerance, and quality of services.

When discussing Big Data we have in mind the 5Vs: Vol-
ume, Velocity, Variety, Variability, and Value. There is a clear
need of many organizations, companies, and researchers to
deal with Big Data volumes efficiently. Examples include web
analytics applications, scientific applications, and social net-
works. For these examples, a popular data processing engine
for Big Data is Hadoop MapReduce [27]. The main problem
is that data arrives too fast for optimal storage and indexing

[28]. There are other several processing platforms for Big
Data: Mesos [29], YARN (Hortonworks, Hadoop YARN: A
next-generation framework forHadoop data processing, 2013
(http://hortonworks.com/hadoop/yarn/)), Corona (Corona,
Under the Hood: Scheduling MapReduce jobs more effi-
ciently with Corona, 2012 (Facebook)), and so forth. A review
of various parallel and distributed programming paradigms,
analyzing how they fit into the Big Data era is presented in
[30].The challenges that are described for BigData Science on
the modern and future Scientific Data Infrastructure are pre-
sented in [31]. The paper introduces the Scientific Data Life-
cycle Management (SDLM)model that includes all the major
stages and reflects specifics in data management in modern
e-Science. The paper proposes the SDI generic architecture
model that provides a basis for building interoperable data or
project centric SDI usingmodern technologies and best prac-
tices. This analysis highlights in the same time performance
and limitations of existing solutions in the context of Big
Data. Hadoop can handle many types of data from disparate
systems: structured, unstructured, logs, pictures, audio files,
communications records, emails, and so forth. Hadoop relies
on an internal redundant data structure with cost advantages
and is deployed on industry standard servers rather than on
expensive specialized data storage systems [32]. The main
challenges for scheduling in Hadoop are to improve existing
algorithms for Big Data processing: capacity scheduling,
fair scheduling, delay scheduling, longest approximate time
to end (LATE) speculative execution, deadline constraint
scheduler, and resource aware scheduling.

Data transfer scheduling in Grids, Cloud, P2P, and so
forth represents a new challenge that is the subject to Big
Data. In many cases, depending on applications architecture,
data must be transported to the place where tasks will
be executed [33]. Consequently, scheduling schemes should
consider not only the task execution time, but also the data
transfer time for finding a more convenient mapping of tasks
[34]. Only a handful of current research efforts consider
the simultaneous optimization of computation and data
transfer scheduling. The big-data I/O scheduler [35] offers a
solution for applications that compete for I/O resources in
a shared MapReduce-type Big Data system [36]. The paper
[37] reviews Big Data challenges from a data management
respective and addresses Big Data diversity, Big Data reduc-
tion, Big Data integration and cleaning, Big Data indexing
and query, and finally Big Data analysis and mining. On the
opposite side, business analytics, occupying the intersection
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of the worlds of management science, computer science, and
statistical science, is a potent force for innovation in both the
private and public sectors. The conclusion is that the data is
too heterogeneous to fit into a rigid schema [38].

Another challenge is the scheduling policies used to
determine the relative ordering of requests. Large distributed
systems with different administrative domains will most
likely have different resource utilization policies. For example,
a policy can take into consideration the deadlines and
budgets, and also the dynamic behavior [39]. HEP experi-
ments are usually performed in private Clouds, considering
dynamic scheduling with soft deadlines, which is an open
issue.

The optimization techniques for the scheduling process
represent an important aspect because the scheduling is a
main building block formaking datacentersmore available to
user communities, being energy-aware [40] and supporting
multicriteria optimization [41]. An example of optimization
is multiobjective and multiconstrained scheduling of many
tasks in Hadoop [42] or optimizing short jobs [43]. The
cost effectiveness, scalability, and streamlined architectures
of Hadoop represent solutions for Big Data processing.
Considering the use of Hadoop in public/private Clouds; a
challenge is to answer the following questions: what type of
data/tasks should move to public cloud, in order to achieve a
cost-aware cloud scheduler? And is public Cloud a solution
for HEP simulation experiments?

The activities for Big Data processing vary widely in a
number of issues, for example, support for heterogeneous
resources, objective function(s), scalability, coscheduling,
and assumptions about system characteristics. The current
research directions are focused on accelerating data process-
ing, especially for Big Data analytics (frequently used in HEP
experiments), complex task dependencies for dataworkflows,
and new scheduling algorithms for real-time scenarios.

4. Conclusions

This paper presented general aspects about methods used in
HEP: Monte Carlo methods and simulations of HEP pro-
cesses, Markovian Monte Carlo, unfolding methods in parti-
cle physics, kernel estimation inHEP, RandomMatrixTheory
used in analysis of particles spectrum. For each method the
proper numerical method had been identified and analyzed.
All of identified methods produce data-intensive applica-
tions, which introduce new challenges and requirements
for Big Data systems architecture, especially for processing
paradigms and storage capabilities. This paper puts together
several concepts: HEP, HPC, numerical methods, and sim-
ulations. HEP experiments are modeled using numerical
methods and simulations: numerical integration, eigenvalues
computation, solving linear equation systems, multiplying
vectors and matrices, interpolation. HPC environments offer
powerful tools for data processing and analysis. Big Data was
introduced as a concept for a real problem: we live in a data-
intensive world, produce huge amount of information, we
face with upper bound introduced by theoretical models.
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