207 research outputs found

    Study of a Symmetrical LLC Dual-Active Bridge Resonant Converter Topology for Battery Storage Systems

    Get PDF
    A symmetrical LLC resonant converter topology with a fixed-frequency quasi-triple phase-shift modulation method is proposed for battery-powered electric traction systems with extensions to other battery storage systems. Operation of the converter with these methods yields two unique transfer characteristics and is dependent on the switching frequency. The converter exhibits several desirable features: 1) load-independent buck-boost voltage conversion when operated at the low-impedance resonant frequency, allowing for dc-link voltage regulation, zero-voltage switching across a wide load range, and intrinsic load transient resilience; 2) power flow control when operated outside the low-impedance resonance for integrated battery charging; 3) and simple operational mode selection based on needed functionality with only a single control variable per mode. Derivation of the transfer characteristics for three operation cases using exponential Fourier series coefficients is presented. Pre-design evaluation of the S-LLC converter is presented using these analytical methods and corroborated through simulation. Furthermore, the construction of a rapid-prototyping magnetics design tool developed for high-frequency transformer designs inclusive of leakage inductance, which is leveraged to create the magnetic elements needed for this work. Two 2kW prototypes of the proposed topology are constructed to validate the analysis, with one prototype having a transformer incorporating the series resonant inductance and secondary clamp inductance into the transformer leakage and magnetizing inductance, respectively. A test bench is presented to validate the analysis methods and proposed multi-operational control scheme. Theoretical and experimental results are compared, thus demonstrating the feasibility of the new multi-mode operation scheme of the S-LLC converter topology

    Integrated DC-DC Charger Powertrain Converter Design for Electric Vehicles Using Wide Bandgap Semiconductors

    Get PDF
    Electric vehicles (EVs) adoption is growing due to environmental concerns, government subsidies, and cheaper battery packs. The main power electronics design challenges for next-generation EV power converters are power converter weight, volume, cost, and loss reduction. In conventional EVs, the traction boost and the onboard charger (OBC) have separate power modules, passives, and heat sinks. An integrated converter, combining and re-using some charging and powertrain components together, can reduce converter cost, volume, and weight. However, efficiency is often reduced to obtain the advantage of cost, volume, and weight reduction.An integrated converter topology is proposed to combine the functionality of the traction boost converter and isolated DC-DC converter of the OBC using a hybrid transformer where the same core is used for both converters. The reconfiguration between charging and traction operation is performed by the existing Battery Management System (BMS) contactors. The proposed converter is operated in both boost and dual active bridge (DAB) mode during traction operation. The loss mechanisms of the proposed integrated converter are modeled for different operating modes for design optimization. An aggregated drive cycle is considered for optimizing the integrated converter design parameters to reduce energy loss during traction operation, weight, and cost. By operating the integrated converter in DAB mode at light-load and boost mode at high-speed heavy-load, the traction efficiency is improved. An online mode transition algorithm is also developed to ensure stable output voltage and eliminate current oscillation during the mode transition. A high-power prototype is developed to verify the integrated converter functionality, validate the loss model, and demonstrate the online transition algorithm. An automated closed-loop controller is developed to implement the transition algorithm which can automatically make the transition between modes based on embedded efficiency mapping. The closed-loop control system also regulates the integrated converter output voltage to improve the overall traction efficiency of the integrated converter. Using the targeted design approach, the proposed integrated converter performs better in all three aspects including efficiency, weight, and cost than comparable discrete solutions for each converter

    A review on integrated battery chargers for electric vehicles

    Get PDF
    Electric vehicles (EVs) contain two main power electronics systems, namely, the traction system and the battery charging system, which are not used simultaneously since traction occurs when the EV is travelling and battery charging when the EV is parked. By taking advantage of this interchangeability, a single set of power converters that can perform the functions of both traction and battery charging can be assembled, classified in the literature as integrated battery chargers (IBCs). Several IBC topologies have been proposed in the literature, and the aim of this paper is to present a literature review of IBCs for EVs. In order to better organize the information presented in this paper, the analyzed topologies are divided into classical IBCs, IBCs for switched reluctance machines (SRMs), IBCs with galvanic isolation, IBCs based on multiple traction converters and IBCs based on multiphase machines. A comparison between all these IBCs is subsequently presented, based on both requirements and possible functionalities.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. T.J.C.S. is supported by the FCT scholarships SFRH/BD/134353/2017 and COVID/BD/151993/2021

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    High-Frequency Bidirectional DC-DC Converters for Electric Vehicle Applications

    Get PDF
    As a part of an electric vehicle (EV) onboard charger, a highly efficient, highly compact, lightweight and isolated DC-DC converter is required to enable battery charging through voltage/current regulation. In addition, a bidirectional on-board charger requires the DC-DC converter to achieve bidirectional power flow: grid-to-vehicle (G2V) and vehicle-to-grid (V2G). In this work, performance characteristics of two popular DC-DC topologies, CLLC and dual active bridge (DAB), are analyzed and compared for EV charging applications. The CLLC topology is selected due to its wide gain range, soft-switching capability over the full load range, and potential for a smaller and more compact size. This dissertation outlines the feasibility, analyses, and performance of a CLLC converter investigated and designed to operate at 1 MHz and 3.3 kW for EV onboard chargers. The proposed design utilizes the emerging wide bandgap (WBG) gallium nitride (GaN) based MOSFETs to enable high-frequency switching without sacrificing the conversion efficiency. One of the major challenges in MHz-level power converter design is to reduce the parasitic components of printed circuit boards (PCBs), which can cause faulty triggering of switches leading to circuit failure. An innovative gate driver is designed and optimized to minimize the effect of parasitic components, which includes a +6/-3 V driving logic enhancing the noise immunity of the system. Another challenge is the efficient design of magnetic components, which requires minimizing the impacts of skin and proximity effects on the transformer winding to reduce the conduction loss at high frequencies. A novel MHz-level planar transformer with adjustable leakage inductance is modeled, designed, and developed for the proposed converter. A comprehensive system level power loss analysis is completed and confirmed with the help of experimental results. This is the first prototype of a 3.3 kW power bidirectional CLLC converter operating at 1 MHz operating frequency with 400-450 V input voltage range, 250-420 V output voltage range. The experiment results have successfully validated the feasibility of the proposed converter conforming to the analysis carried out during the design phase. With an appropriate design of driving circuit and control signal, the prototype achieves a peak efficiency of 97.2% with 9.22 W/cm3 (151.1 W/in3) power density which is twice more power dense than other state-of-the-art isolated DC-DC converters

    Efficiency comparison of a dc-dc interleaved converter based on SiC-MOSFET and Si-IGBT devices for EV chargers

    Get PDF
    The charging process is one of the main factors for the widespread dissemination of electric mobility, therefore, the use of optimized power electronics converters is of utmost importance. In addition to innovative topologies, the use of emerging technologies of semiconductors is also crucial. In this context, using a three-phase interleaved dc-dc topology, a comparison between the use of SiC-MOSFET and Si-IGBT is presented in this paper, mainly in terms of operating efficiency. Two cases have been presented: 1) with the same inductor, where only power device losses have been considered; 2) with the same inductor current ripple, where different inductors have been considered and the analysis included also the inductor design and losses. The simulations were carried out in LTspice simulation tool on realistic dynamic models of power switch modules obtained from the manufacturer’s experimental tests. The results validate the use of SiC-MOSFET for the three-phase interleaved dc-dc topology showing lower losses for both the power devices and inductor and, most important, prove the advantages of its use in terms of efficiency for a wide range of operating powers.This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia with-in the Project Scope: UID/CEC/00319/2019, and by the FCT Project newERA4GRIDs PTDC/EEI-EEE/30283/2017

    Multi-objective optimization of power electronic converters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Isolated Wired and Wireless Battery Charger with Integrated Boost Converter for PHEV and EV Applications

    Get PDF
    Vehicle charging and vehicle traction drive components can be integrated for multi-functional operations, as these functions are currently operating independently. While the vehicle is parked, the hardware that is available from the traction drive can be used for charging. The only exception to this would be the dynamic vehicle-charging concept on roadways. WPT can be viewed as a revolutionary step in PEV charging because it fits the paradigm of vehicle to infrastructure (V2I) wirelessly. WPT charging is convenient and flexible not only because it has no cables and connectors that are necessary, but due more to the fact that charging becomes fully independent. This is possibly the most convenient attribute of WPT as PEV charging can be fully autonomous and may eventually eclipse conductive charging. This technology also provides an opportunity to develop an integrated charger technology that will allow for both wired and wireless charging methods. Also the integrated approach allows for higher charging power while reducing the weight and volume of the charger components in the vehicle. The main objective of this work is to design, develop, and demonstrate integrated wired and wireless chargers with boost functionality for traction drive to provide flexibility to the EV customers
    • …
    corecore