1,108 research outputs found

    Bid-Centric Cloud Service Provisioning

    Full text link
    Bid-centric service descriptions have the potential to offer a new cloud service provisioning model that promotes portability, diversity of choice and differentiation between providers. A bid matching model based on requirements and capabilities is presented that provides the basis for such an approach. In order to facilitate the bidding process, tenders should be specified as abstractly as possible so that the solution space is not needlessly restricted. To this end, we describe how partial TOSCA service descriptions allow for a range of diverse solutions to be proposed by multiple providers in response to tenders. Rather than adopting a lowest common denominator approach, true portability should allow for the relative strengths and differentiating features of cloud service providers to be applied to bids. With this in mind, we describe how TOSCA service descriptions could be augmented with additional information in order to facilitate heterogeneity in proposed solutions, such as the use of coprocessors and provider-specific services

    Application-centric Resource Provisioning for Amazon EC2 Spot Instances

    Full text link
    In late 2009, Amazon introduced spot instances to offer their unused resources at lower cost with reduced reliability. Amazon's spot instances allow customers to bid on unused Amazon EC2 capacity and run those instances for as long as their bid exceeds the current spot price. The spot price changes periodically based on supply and demand, and customers whose bids exceed it gain access to the available spot instances. Customers may expect their services at lower cost with spot instances compared to on-demand or reserved. However the reliability is compromised since the instances(IaaS) providing the service(SaaS) may become unavailable at any time without any notice to the customer. Checkpointing and migration schemes are of great use to cope with such situation. In this paper we study various checkpointing schemes that can be used with spot instances. Also we device some algorithms for checkpointing scheme on top of application-centric resource provisioning framework that increase the reliability while reducing the cost significantly

    Reliable Provisioning of Spot Instances for Compute-intensive Applications

    Full text link
    Cloud computing providers are now offering their unused resources for leasing in the spot market, which has been considered the first step towards a full-fledged market economy for computational resources. Spot instances are virtual machines (VMs) available at lower prices than their standard on-demand counterparts. These VMs will run for as long as the current price is lower than the maximum bid price users are willing to pay per hour. Spot instances have been increasingly used for executing compute-intensive applications. In spite of an apparent economical advantage, due to an intermittent nature of biddable resources, application execution times may be prolonged or they may not finish at all. This paper proposes a resource allocation strategy that addresses the problem of running compute-intensive jobs on a pool of intermittent virtual machines, while also aiming to run applications in a fast and economical way. To mitigate potential unavailability periods, a multifaceted fault-aware resource provisioning policy is proposed. Our solution employs price and runtime estimation mechanisms, as well as three fault tolerance techniques, namely checkpointing, task duplication and migration. We evaluate our strategies using trace-driven simulations, which take as input real price variation traces, as well as an application trace from the Parallel Workload Archive. Our results demonstrate the effectiveness of executing applications on spot instances, respecting QoS constraints, despite occasional failures.Comment: 8 pages, 4 figure

    HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Full text link
    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.Comment: 15 pages, 9 figure

    Notes on Cloud computing principles

    Get PDF
    This letter provides a review of fundamental distributed systems and economic Cloud computing principles. These principles are frequently deployed in their respective fields, but their inter-dependencies are often neglected. Given that Cloud Computing first and foremost is a new business model, a new model to sell computational resources, the understanding of these concepts is facilitated by treating them in unison. Here, we review some of the most important concepts and how they relate to each other

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    A Minimum-Cost Flow Model for Workload Optimization on Cloud Infrastructure

    Full text link
    Recent technology advancements in the areas of compute, storage and networking, along with the increased demand for organizations to cut costs while remaining responsive to increasing service demands have led to the growth in the adoption of cloud computing services. Cloud services provide the promise of improved agility, resiliency, scalability and a lowered Total Cost of Ownership (TCO). This research introduces a framework for minimizing cost and maximizing resource utilization by using an Integer Linear Programming (ILP) approach to optimize the assignment of workloads to servers on Amazon Web Services (AWS) cloud infrastructure. The model is based on the classical minimum-cost flow model, known as the assignment model.Comment: 2017 IEEE 10th International Conference on Cloud Computin
    • …
    corecore