105 research outputs found

    Multicriteria hybrid flow shop scheduling problem: literature review, analysis, and future research

    Get PDF
    This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future researchon this topic, including the following: (i) use uniform and dedicated parallel machines, (ii) use exact and metaheuristics approaches, (iv) develop lower and uppers bounds, relations of dominance and different search strategiesto improve the computational time of the exact methods,  (v) develop  other types of metaheuristic, (vi) work with anticipatory setups, and (vii) add constraints faced by the production systems itself

    Approximation algorithms for solving multi-objective optimization problems

    Get PDF
    This paper tries to cover the main aspects/properties related to scheduling problems, approximation algorithms, and multi-objective combinatorial optimization. Then, we try to describe the main techniques that can be used to solve such problems. In this paper, the reviews results relate to multi-objective optimization problems, exact and approximation search, with the aim of getting all Pareto optimal solutions for some NP-hard problems

    A Bicriteria Simulated Annealing Algorithm for Scheduling Jobs on Parallel Machines with Sequence Dependent Setup Times

    Get PDF
    The study considers the scheduling problem of identical parallel machines subject to minimization of the maximum completion time and the maximum tardiness expressed in a linear convex objective function. The maximum completion time or makespan is the date when the last job to be completed leaves the system. The maximum tardiness is indicated by the job that is completed with the longest delay relative its due date. Minimizing both criteria can help assuring a high utilization of the production system as well as a high level of service towards the client. Due to the complexity of the problem, a Simulated Annealing (SA) heuristic has been implemented to be able to obtain an efficient solution in a reasonable running time. A set of n jobs is assigned, to one of the m identical parallel machines. Each job is processed in only one operation before its completion after which it leaves the system. Constraints, such as due dates for each job and setup times for the machines, are considered. The resolution procedure consists of two phases and begins with an initial solution generator. Then a SA heuristic is applied for further improvement of the solution. 4 generators are used to create an initial solution and 3 to generate neighbour solutions. To test and verify the performance of the proposed resolution procedure, a computational experimentation has been realized on a set of test problems generated ad-hoc

    A MIXED-INTEGER PROGRAMMING MODEL FOR THE JOB SCHEDULING PROBLEM IN A PRODUCTION COMPANY

    Get PDF
    Purpose: In this study, a mixed-integer programming model is developed to minimize the total lateness and total completion time of the jobs in an automotive company. In order to respond rapidly to the continuous customer demand through the production, the work schedule of engineers in the research and development department is considered flexibly. Methodology: In the study, the mixed-integer programming model is supported by the analytical hierarchy process model to determine the weighted values of total tardiness and total completion times. The developed model is applied to the automotive company using the real data and the problem is solved using the GAMS CPLEX 24.1.3 software. Findings: In this job scheduling problem, the total completion time is decreased to 622 hours from 10149 hours, maximum tardiness is decreased to 9 hours from 104 hours and total tardiness is decreased to 13 hours from 860 hours by using the proposed model. Originality: The proposed model is used for the job scheduling purpose in compliance with the structure of the automotive industry company using the machine scheduling modeling principles and Analytical Hierarchy Process together. Keywords: Parallel Machine Scheduling, Optimization, Mixed Integer Programming, Analytical Hierarchical Process
    corecore