877 research outputs found

    Dual-Force ISOMAP: A New Relevance Feedback Method for Medical Image Retrieval

    Get PDF
    With great potential for assisting radiological image interpretation and decision making, content-based image retrieval in the medical domain has become a hot topic in recent years. Many methods to enhance the performance of content-based medical image retrieval have been proposed, among which the relevance feedback (RF) scheme is one of the most promising. Given user feedback information, RF algorithms interactively learn a user?s preferences to bridge the ?semantic gap? between low-level computerized visual features and high-level human semantic perception and thus improve retrieval performance. However, most existing RF algorithms perform in the original high-dimensional feature space and ignore the manifold structure of the low-level visual features of images. In this paper, we propose a new method, termed dual-force ISOMAP (DFISOMAP), for content-based medical image retrieval. Under the assumption that medical images lie on a low-dimensional manifold embedded in a high-dimensional ambient space, DFISOMAP operates in the following three stages. First, the geometric structure of positive examples in the learned low-dimensional embedding is preserved according to the isometric feature mapping (ISOMAP) criterion. To precisely model the geometric structure, a reconstruction error constraint is also added. Second, the average distance between positive and negative examples is maximized to separate them; this margin maximization acts as a force that pushes negative examples far away from positive examples. Finally, the similarity propagation technique is utilized to provide negative examples with another force that will pull them back into the negative sample set. We evaluate the proposed method on a subset of the IRMA medical image dataset with a RF-based medical image retrieval framework. Experimental results show that DFISOMAP outperforms popular approaches for content-based medical image retrieval in terms of accuracy and stability

    IceBreaker: Solving Cold Start Problem for Video Recommendation Engines

    Full text link
    Internet has brought about a tremendous increase in content of all forms and, in that, video content constitutes the major backbone of the total content being published as well as watched. Thus it becomes imperative for video recommendation engines such as Hulu to look for novel and innovative ways to recommend the newly added videos to their users. However, the problem with new videos is that they lack any sort of metadata and user interaction so as to be able to rate the videos for the consumers. To this effect, this paper introduces the several techniques we develop for the Content Based Video Relevance Prediction (CBVRP) Challenge being hosted by Hulu for the ACM Multimedia Conference 2018. We employ different architectures on the CBVRP dataset to make use of the provided frame and video level features and generate predictions of videos that are similar to the other videos. We also implement several ensemble strategies to explore complementarity between both the types of provided features. The obtained results are encouraging and will impel the boundaries of research for multimedia based video recommendation systems

    Discriminative learning with application to interactive facial image retrieval

    Get PDF
    The amount of digital images is growing drastically and advanced tools for searching in large image collections are therefore becoming urgently needed. Content-based image retrieval is advantageous for such a task in terms of automatic feature extraction and indexing without human labor and subjectivity in image annotations. The semantic gap between high-level semantics and low-level visual features can be reduced by the relevance feedback technique. However, most existing interactive content-based image retrieval (ICBIR) systems require a substantial amount of human evaluation labor, which leads to the evaluation fatigue problem that heavily restricts the application of ICBIR. In this thesis a solution based on discriminative learning is presented. It extends an existing ICBIR system, PicSOM, towards practical applications. The enhanced ICBIR system allows users to input partial relevance which includes not only relevance extent but also relevance reason. A multi-phase retrieval with partial relevance can adapt to the user's searching intention in a from-coarse-to-fine manner. The retrieval performance can be improved by employing supervised learning as a preprocessing step before unsupervised content-based indexing. In this work, Parzen Discriminant Analysis (PDA) is proposed to extract discriminative components from images. PDA regularizes the Informative Discriminant Analysis (IDA) objective with a greatly accelerated optimization algorithm. Moreover, discriminative Self-Organizing Maps trained with resulting features can easily handle fuzzy categorizations. The proposed techniques have been applied to interactive facial image retrieval. Both a query example and a benchmark simulation study are presented, which indicate that the first image depicting the target subject can be retrieved in a small number of rounds
    corecore