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ABSTRACT

The amount of digital images is growing drastically and advanced tools for search-
ing in large image collections are therefore becoming urgently needed. Content-
based image retrieval is advantageous for such a task in terms of automatic fea-
ture extraction and indexing without human labor and subjectivity in image
annotations. The semantic gap between high-level semantics and low-level visual
features can be reduced by the relevance feedback technique. However, most
existing interactive content-based image retrieval (ICBIR) systems require a sub-
stantial amount of human evaluation labor, which leads to the evaluation fatigue
problem that heavily restricts the application of ICBIR.

In this thesis a solution based on discriminative learning is presented. It ex-
tends an existing ICBIR system, PicSOM, towards practical applications. The
enhanced ICBIR system allows users to input partial relevance which includes not
only relevance extent but also relevance reason. A multi-phase retrieval with par-
tial relevance can adapt to the user’s searching intention in a from-coarse-to-fine
manner.

The retrieval performance can be improved by employing supervised learning as
a preprocessing step before unsupervised content-based indexing. In this work,
Parzen Discriminant Analysis (PDA) is proposed to extract discriminative com-
ponents from images. PDA regularizes the Informative Discriminant Analysis
(IDA) objective with a greatly accelerated optimization algorithm. Moreover,
discriminative Self-Organizing Maps trained with resulting features can easily
handle fuzzy categorizations.

The proposed techniques have been applied to interactive facial image retrieval.
Both a query example and a benchmark simulation study are presented, which
indicate that the first image depicting the target subject can be retrieved in a
small number of rounds.
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Chapter 1

Introduction

1.1 Goals and scope of the thesis

Content-Based Image Retrieval (CBIR) addresses the problem of finding images
relevant to the users’ information needs from image databases. The indexing
is principally based on low-level visual features for which automatic extraction
methods are available. Due to the semantic gap, i.e. the inherently weak con-
nection between the high-level semantic concepts that humans naturally asso-
ciate with images and the low-level visual features that the computer is relying
upon, the task of developing this kind of systems is very challenging. Interactive
Content-Based Image Retrieval (ICBIR) improves the retrieval performance by
employing relevance feedback (RF), i.e. adjusts the subsequent retrieval process
by using information gathered from the user’s feedback.

Some CBIR systems require the user to supply starting or example images for the
retrieval. These images provide extra similarity information in addition to the
relevance feedback. The use of example images quite naturally leads to improved
retrieval performance. However, the user-supplied initial images are not available
in many applications, for example, when searching a photo of a specific criminal
only through the recalling of an eyewitness. This work focuses on the cases
without starting images.

Many existing ICBIR systems confront the evaluation fatigue problem. This
is especially evident when the target class is extreme small or rare so that the
searching requires too many interaction rounds to retrieve the first satisfactory
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image. Consequently the user probably gets tired and ceases searching before the
retrieval goal is successfully attained. One of the underlying reasons is that most
existing ICBIR systems employ only unsupervised methods in extracting visual
features and in building associated indexes. By this means the learning from
users’ feedback progresses with only mediocre efficiency. This thus motivates
incorporation of supervised information for building a predictive subsystem to
speed up the retrieval.

Deficient user interfaces are another obstacle for using ICBIR. Humans evaluate
image similarity intelligently and usually in various focuses or semantic aspects.
However, users fail to input the aspect information through a single relevance
criterion which is adopted by most existing ICBIR systems. Consequently, the
collected similarity data used by the relevance feedback learning algorithm is
often inconsistent with the evaluation focus, and thus the prediction will deviate
from the retrieval goal. To overcome the above discrepancy, a successful ICBIR
system must allow users to specify certain properties of the target image, for
example, the gender or race in facial image retrieval, and perform prediction
consistent with such partial relevance assessments.

A simple way to accommodate partial relevance is to select image candidates
according to the user-specified properties. The selection can be implemented by
using available ground truths or previously trained classifiers. However, such
hard filtering methods would be problematic in handling fuzzy cases where there
is no common criterion for classifying the image contents, e.g. the hairstyle in
facial image retrieval. It has been demonstrated by the PicSOM system [66] that
Self-Organizing Maps (SOMs) are a powerful tool for learning from relevance
feedback in ICBIR. A natural way to reuse and improve the PicSOM frame-
work is to extend Self-Organizing Maps by incorporating supervised information.
This thesis concentrates on extracting discriminative components of images as a
preprocessing step before the SOM training.

The most influential factor in the complexity of the image retrieval problem is the
repertoire of images in the database—the image domain [110]. A narrow image
domain has only a limited and predictable variable in all aspects of appearance
whereas a broad image domain has in principle an unlimited and unpredictable
variability as well as ambiguous and subjective semantics. For the latter, the
performance of automatically extracted visual features remains moderate and
additional features (e.g. text) may thus be required for reaching an acceptable
retrieval performance level (see e.g. Idée1). On the other hand, most real-world
applications of CBIR (e.g. [9, 50, 85, 86]) belong to the former case. This work
focuses on a certain domain of images, in particular facial images, in line with

1http://labs.ideeinc.com/visual/
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the goal of pushing ICBIR closer to practical use.

Digital images are usually sampled as pixel matrices or vectors. Supervised learn-
ing based on the vectorized representations of images is thus performed in very
high-dimensional spaces and inherently prone to overfitting. Complexity control
is therefore necessary. This thesis discusses a number of unsupervised dimension-
ality reduction methods which encode images of a certain domain in a compact
format. Moreover, regularization as another method for complexity control is
described as well. By attaching a penalization term to the original objective, one
actually incorporates a certain prior for the parameters to be learned, which can
effectively compensate the data scarcity.

The success of a discriminant analysis method for images requires an efficient
optimization algorithm. This work aims at finding a projection matrix that
maximizes the likelihood of image labels. A speedup method should make use of
the information geometry principle and fulfill the orthonormality constraint. A
fast implementation by matrix multiplication will be described as well.

Interactive Facial Image Retrieval (IFIR) is a particular case of ICBIR. In IFIR
the user searches the images of a target subject in a setting mimicking the recall-
ing of an eyewitness. Most facial image databases contain only a small number of
images for each subject, which forms the major challenge in IFIR. Conventional
ICBIR systems often fail to return one of the subject images before the user feels
tired. This thesis will present and analyze the IFIR query process and exam-
ine the improvement by using the proposed techniques with a popularly used
database. The performance of various methods is quantified by measuring the
advantage in the first relevant hit over random retrieval as well as precisions at
various recall levels.

1.2 Contributions of the thesis

In this thesis, a novel framework that incorporates supervised information for im-
proving the performance of Interactive Content-Based Image Retrieval (ICBIR)
is suggested with the following major contributions:

• The appearance of the first relevant image is accelerated by utilizing partial
relevance from the user feedback. In addition to filtering by ground truths
and classifiers, partial relevances are implemented by a DSOM, a discrim-
inative extension of Self-Organizing Maps, which can easily be integrated
into the PicSOM CBIR system.
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• Discriminative feature extraction methods are studied and a new discrim-
inant analysis method is proposed. The proposed Parzen Discriminant
Analysis (PDA) regularizes the Informative Discriminant Analysis (IDA)
objective with a prior addressing the piecewise smoothness of images. Three
strategies are applied to speed up the optimization:

– The gradient calculation is reformulated by matrix operations without
explicitly going through all pairwise differences.

– The updates that approximate geodesic flow in the Stiefel manifold
are adopted to avoid expensive calculation of the Givens rotation.

– The Principal Whitened Gradient (PWG) method for information ge-
ometry is proposed to improve the convergence of optimization.

• A new non-negative feature extraction method, Projective Non-negative
Matrix Factorization (P-NMF), is presented. The underlying reasons that
lead to high sparseness by P-NMF are analyzed.

• The First Relevant Hit Advantage (FRHA) measurement is proposed to
quantify the performance of an ICBIR system in retrieving the first relevant
image.

• The above ICBIR improvement techniques have been applied to interactive
facial image retrieval. In addition to a query demonstration, quantitative
simulation study is presented to compare the performance of six ICBIR
approaches.

1.3 Outline of the thesis

After this introductory chapter, Chapter 2 reviews the related work in content-
based image retrieval and relevance feedback techniques which attack the seman-
tic gap problem, including the essential ingredients of the PicSOM ICBIR system.
It is then pointed out that the evaluation fatigue problem is one of the major
difficulties in ICBIR. A solution based on partial relevance is introduced, with
implementation possibilities discussed.

Chapter 3 describes discriminative feature extraction for images. First, various
approaches for encoding images in a specific domain are explored. After reviewing
some related work in discriminant analysis, the Parzen Discriminant Analysis
(PDA) is presented, with extension to aspects with fuzzy classification. The
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PicSOM retrieval procedure can then be enhanced by using the discriminatively
trained SOMs.

The applications of the proposed ICBIR techniques on a facial image database
are illustrated in Chapter 4. The motivation of interactive facial image retrieval
is first described. Next, a concrete query example demonstrates the retrieval
process. Quantitative simulation results are then provided.

Finally, Chapter 5 gives the conclusions of the work presented in this thesis
and discusses the potential future work. This is followed by references and a
set of publications detailing the proposed methods and showing the results of
experiments.

1.4 Included publications

The following three journal articles and five conference papers have been included
in this thesis.

1. Z. Yang and J. Laaksonen. Interactive retrieval in facial image database
using Self-Organizing Maps. In Proceedings of IAPR Conference on Ma-
chine Vision Applications (MVA 2005), pages 112–115, Tsukuba Science
City, Japan, May 2005.

2. Z. Yang and J. Laaksonen. Approximated classification in interactive facial
image retrieval. In Proceedings of 14th Scandinavian Conference on Image
Analysis (SCIA 2005), volume 3540 of Lecture Notes in Computer Science,
Springer, pages 770–779, Joensuu, Finland, June 2005.

3. Z. Yang and J. Laaksonen. Partial relevance in interactive facial image
retrieval. In Proceedings of 3rd International Conference on Advances
in Pattern Recognition (ICAPR 2005), volume 3687 of Lecture Notes in
Computer Science, Springer, pages 216–225, Bath, UK, August 2005.

4. Z. Yang and J. Laaksonen. Regularized neighborhood component analysis.
In Proceedings of 15th Scandinavian Conference on Image Analysis (SCIA
2007), volume 4522 of Lecture Notes in Computer Science, Springer, pages
253–262, Aalborg, Denmark, June 2007.

5. Z. Yang and J. Laaksonen. Face recognition using Parzenfaces. In Pro-
ceedings of International Conference on Artificial Neural Networks (ICANN
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2007), volume 4669 of Lecture Notes in Computer Science, Springer pages
200–209, Porto, Portugal, September 2007.

6. Z. Yang and J. Laaksonen. Multiplicative updates for non-negative projec-
tions. Neurocomputing, 71(1-3):363–373, 2007.

7. Z. Yang, Z. Yuan, and J. Laaksonen. Projective non-negative matrix factor-
ization with applications to facial image processing. International Journal
on Pattern Recognition and Artificial Intelligence, 21(8):1353-1362, 2007.

8. Z. Yang and J. Laaksonen. Principal whitened gradients for information
geometry. Neural Networks, 21(2-3):232-240, 2008.

1.5 Contribution of the author in the publica-
tions

In Publication 1, the author proposed to solve the IFIR problem with Self-
Organizing Maps. The empirical study was cooperatively performed by the
author and D.Sc. Jorma Laaksonen. Compared with the existing FACERET
system, the proposed method is advantageous because it can handle multiple
features simultaneously and improve retrieval performance by long-term learning
from other users’ relevance feedback.

In Publication 2, the author proposed to implement the partial relevances by
approximated classifiers and performed the experiments with assistance from
D.Sc. Jorma Laaksonen. The main finding in Publication 2 is that the appearance
of the first relevant image can be significantly accelerated if and only if the
employed classifiers have very high accuracy.

In Publication 3, the author identified the two phases in IFIR and proposed to
improve the retrieval in the first phase by using partial relevance, which was
implemented by replacing the unsupervised SOMs in the PicSOM system with
DSOMs. The empirical study was accomplished by the author and D.Sc. Jorma
Laaksonen. The experimental results indicate that the proposed method can
remarkably speed up the appearance of the first relevant hit.

Publication 4 argues that the Informative Discriminant Analysis (IDA) and
Neighborhood Component Analysis (NCA) are prone to overfitting for high-di-
mensional data. To address this problem, the author proposed a regularization
technique which is equivalent to maximizing the posterior of the linear transfor-
mation matrix with a Gaussian prior. The experimental results on facial images
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show that the regularized NCA can greatly improve the generalization perfor-
mance. The problem identification, the improved algorithm, and the empirical
study were all accomplished by the author.

In Publication 5, the Parzen Discriminant Analysis (PDA) is presented and
applied to the face recognition problem. PDA regularizes the IDA objective by
emphasizing the piecewise smoothness of the projection matrix entries. Another
major improvement over IDA is to accelerate the gradient calculation by matrix
multiplications. Furthermore, the PDA updates maintain the orthonormality
by following the approximated geodesic flow in the Stiefel manifold. The above
innovations were proposed by the author, who also performed the face recognition
comparison experiments.

Publication 6 describes how to construct multiplicative update rules for non-
negative projections based on Oja’s iterative learning rule. The derivation pro-
vides a sound interpretation of learning non-negative projection matrices based on
iterative multiplicative updates—a kind of Hebbian learning with normalization.
A convergence analysis is sketched by interpreting the multiplicative updates as
a special case of natural gradient learning. Two application examples of the
proposed technique are also demonstrated: a non-negative variant of the linear
Hebbian networks and a non-negative Fisher discriminant analysis, including its
kernel extension. The resulting algorithms demonstrate interesting properties for
data analysis tasks in experiments performed on facial images. The author was
responsible for both theoretical and empirical contributions of this publication.

The Projective Non-negative Matrix Factorization (P-NMF) was previously pre-
sented in [134] by Prof. Erkki Oja and Zhijian Yuan. In addition to recapitulating
the model and algorithms of P-NMF, Publication 7 discusses the underlying rea-
sons that lead to high orthogonality or sparseness by P-NMF, and presents both
qualitative and quantitative comparison with Non-negative Matrix Factorization
(NMF). Furthermore, the features obtained by P-NMF can be used as an input
to classifiers for facial images. Publication 7 also corrects two errors in the P-
NMF update rules in [134]. The author was responsible for interpreting P-NMF,
comparison experiments against NMF, classification tests on facial images, and
the two corrections in the P-NMF update rules.

In Publication 8, the author devised two strategies to improve the optimization in
information geometry. First, a local Euclidean embedding is identified by whiten-
ing the tangent space, which leads to an additive parameter update sequence that
approximates the geodesic flow to the optimal density estimation. Second, re-
moval of the minor components of the gradients enhances the estimation of the
Fisher information matrix and reduces the computational cost. It is proven in this
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publication that dimensionality reduction is necessary for learning multidimen-
sional linear transformations. The optimization based on the principal whitened
gradients demonstrates faster and more robust convergence in simulations on (i)
unsupervised learning with synthetic data, and (ii) discriminant analysis of breast
cancer data. Publication 8 is the extended version of [132] by the same authors.
In the original and extended papers, the author was responsible for both the
theoretical and empirical contributions.
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Chapter 2

Interactive Content-Based
Image Retrieval

In this chapter the related work in the interactive content-based image retrieval
is reviewed. The major difficulty of the relevance feedback learning is the evalu-
ation fatigue problem. We propose the partial relevance technique to attack this
problem. Partial relevances in the PicSOM system can be implemented either by
direct filtering or by Discriminative Self-Organizing Maps described in the next
chapter.

2.1 Content-based image retrieval

An image retrieval system is a computer program for browsing, searching and
retrieving images from a large database of digital images. Content-based image
retrieval (CBIR), also known as query by image content (QBIC) and content-
based visual information retrieval (CBVIR) is the application of computer vision
techniques to the image retrieval problem, that is, the problem of searching for
digital images in large databases. The term of CBIR first appeared in a paper
by T. Kato [56] to describe automatic retrieval of images from a database based
on visual features, such as color and shape. Since then, the term has been used
to describe the process of retrieving desired images from a large collection on the
basis of statistical image features.
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2.1.1 Search by textual annotations

The research on image retrieval or searching for digital images in large databases
can be dated back to 1970s. The traditional approach is based on textual anno-
tations. That is, the images are represented and indexed by such metadata as
filenames, captions and keywords, and the retrieval is then carried out with the
text information.

Manual insertion of textual annotations is however laborious and thus impractical
for large-scale image collections. Moreover, the retrieval results could be unsat-
isfying because manual annotations are subjective and the annotation focus may
differ among human annotators. To avoid these problems, many text-based image
retrieval systems, such as Google Image Search1, extract the annotations from
the text surrounding the images. Nevertheless, the text description nearby may
be irrelevant or only partially relevant to the image. The language of the query
may also be different from that of the text. In addition, it is impossible to query
images that do not exist in a text document by such a technique.

2.1.2 Search by image content

Content-Based Image Retrieval emerged as a method to overcome the evident
problems of text-based image retrieval (see e.g. [26, 114]). “Content-based”
means that the search will analyze the actual content of the image. The term
“content” in this context refers to the descriptors or information that can be
derived from the image itself using automatic image processing techniques. In-
dexing images in CBIR differs substantially from indexing textual documents
since images or visual information in general do not consist of such fundamental
building blocks as words in text, which could be directly utilized. Instead, the
desired attributes of images for efficient indexing are complex functions of image
regions or the whole image. In this sense, image retrieval can be considered as a
discipline in the intersection of traditional information retrieval (IR) and image
processing.

CBIR has been a subject of very intensive research effort for more than a decade.
A great number of research papers have been published and many notable CBIR
systems, such as QBIC [81, 28], Photobook [92], VisualSEEk [111], Tiltomo2,

1http://images.google.com
2http://www.tiltomo.com
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Behold Image Search3, xcavator4, have been developed since early 1990s. Some
open-source CBIR software systems such as imgSeek5 and GIFT 6 have also ap-
peared in recent years. For reviews of CBIR systems, see, for instance, [122] and
[19]. In addition, textbooks and surveys on CBIR and multimedia retrieval in
general are available, see e.g. [133].

There exists growing interest in CBIR because of the limitations inherent in
text-based media search systems, as well as the large range of possible uses for
efficient image retrieval. Potential uses of CBIR include photograph archives
[100], retail catalogs [123], medical diagnosis [85, 108], geography and remote
sensing [112], astronomy [18], crime prevention and investigation [86], education
[13, 80], searching device-parts [74], trademark retrieval [9], and paper industry
[50], etc.

Multiple usage types may be supported by even a single CBIR system [16]. The
most precise search task is target search, in which the user is trying to find a
specific target image, which may or may not be actually present in the database
and which is the only relevant image for this query. Category search occurs when
the user is looking for images belonging to a certain category or class of images
and all images fulfilling the category criteria are considered relevant. In open-
ended search or browsing, the user has a vague or inexact search goal in mind
and she browses the database for any interesting images.

A query can start with an example image supplied by the user, but from the user
perspective an ideal CBIR system should implement more convenient retrieval
with a mental configuration. That is, the search goal only exists in the user’s mind
and can be expressed by using query sentences of natural languages. Among the
above search types and query settings, this thesis will focus on category search
without user-provided starting images.

2.2 Retrieval with relevance feedback

Relevance feedback (RF) is an interaction process, introduced in the mid-1960’s
for text retrieval techniques, to improve retrieval effectiveness. Original work
on RF includes [99, 49, 104]. It has been defined in [102] as the process of
automatically adjusting an existing query by using information fed back from

3http://photo.beholdsearch.com
4http://www.scavator.net
5http://www.imageseek.net/
6http://www.gnu.org/software/gift/
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the user about the relevance of previously retrieved documents. In the context
of CBIR, researchers soon felt the need to integrate RF in order to overcome the
semantic gap problem.

2.2.1 Semantic gap

The image content in its original format is a pixel array. On the other hand,
humans possess a highly sophisticated visual system and have a lot of a priori
information in object recognition and semantic combination. This information is
based on previous experience, personal preferences and interests, cultural issues,
and the context in which the image is represented. Unfortunately, this kind of
knowledge is practically impossible to implement in a computer vision applica-
tion. The discrepancy between low-level visual features and high-level semantics
is commonly referred to as the semantic gap.

The varying difficulty of the CBIR problem can also be examined from the view-
point of different users’ needs. A categorization of image retrieval was proposed
by Eakins [24] who identified three distinct levels of image queries:

• Level 1, retrieval by primitive (visual) features.

• Level 2, retrieval by logical features or semantic attributes.

• Level 3, retrieval by abstract attributes.

Level 1 queries concentrate on basic low-level components of visual content such
as color, texture and shape. Queries at level 2 may contain specific objects (e.g.
“car”) and scenes (e.g. “beach”). Level 3 queries may involve abstract concepts
(e.g. images depicting “freedom” or “humor”), which requires sophisticated im-
age understanding, knowledge representation, and reasoning about the relations
and significance of objects and scenes. Generally, users are interested in search-
ing at level 2 or 3. On the other hand, most current image retrieval systems are
constructed using level 1 processing and recent research has been moving toward
level 2 retrieval. Indexing and retrieval at level 3 are currently possible only by
using textual descriptions.

Given the current state of machine vision technology, this thesis focuses on the
narrow image domain of images to make the work closer to practical applications.
The search tasks in such systems are more determined and generally at retrieval
level 2. Two strategies are adopted to bridge the semantic gap. One is to steer
the query toward the desired target by learning from the relevance feedback of the
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user. The other is to extract semantically more informative and discriminative
features from the images by using supervised learning techniques.

2.2.2 Interactive content-based image retrieval

The weakness of the connection between semantic concepts and visual low-level
features is a serious limitation and reduces the usefulness of the content-based
approach of image retrieval. As a result, many content-based retrieval appli-
cations cannot be expected to return the best available images or reach a high
precision of relevant items. The systems can nevertheless serve as valuable semi-
automatic tools and make retrieving of images manageable even from large-scale
wide-domain image collections. More satisfactory results can often be obtained
in Interactive Content-Based Image Retrieval (ICBIR), where the image query is
refined in an iterative process with the relevance feedback technique.

Each round of ICBIR implements the relevance feedback in three steps. First, the
system shows the user a set of images and remembers what images have already
been shown, not to display them again. Second, the user somehow indicates
which images are to some extent relevant to the present query and which are
not. Third, the system changes its behavior depending on the relevance feedback
provided for the seen images. During the retrieval process more and more images
are assessed and the ICBIR system gradually learns the correspondence between
the high-level concepts humans use and the low-level features obtained from the
images.

In this work, we assume that at each iteration the user selects the relevant images
and the non-selected images can be implicitly regarded as non-relevant. Of course,
there exist other possibilities of granularity in relevance assessments. In some
systems, for example, the non-relevant examples must also be explicitly provided
and the non-selected images are considered to be neutral. The relevance scale may
also be finer, e.g. containing options like “very relevant”, “relevant”, “somewhat
relevant”, and so on.

Relevance feedback can be seen as a form of supervised learning to steer the
subsequent query toward relevant images by using the information gathered from
the user’s feedback. Three specific characteristics of relevance feedback, however,
distinguishes it from many other machine learning problems [142]: (a) The small
number of training samples. Compared with many supervised learning tasks, the
number of samples relative to the dimensionality of the feature spaces is very small
in relevance feedback. Only a rather small number of images are usually evaluated
in one round of the query, and users are often impatient to provide much feedback.
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This makes many traditional inductive learning methods ill-posed since they fail
to produce stable results. (b) The asymmetry of the training data. The number
of evaluated non-relevant images usually cannot represent the distribution of all
non-relevant images well. (c) The real-time processing requirements. Relevance
feedback is used when the user is interacting with the system and thus waiting
for the completion of the algorithm. Fast response time is essential as an image
query may well take several rounds until the results are satisfactory. With large
databases, this usually limits the range of possible methods to ones which do not
rely on processing the whole database on each query round. Furthermore, an RF
learning algorithm should be accompanied with an efficient indexing technique
that speeds up the access to image candidates.

2.2.3 Relevance feedback techniques

During a retrieval session, an ICBIR system returns at each iteration a set of
unseen images that it deems to be the most relevant ones for the search goal
based on the accumulated feedback information. This can be implemented by a
ranking algorithm with various relevance score definitions. An excellent survey
on the ranking algorithms based on relevance feedback can be found in [63].
This section summarizes the essential elements of some newly appeared ICBIR
systems.

A straightforward method is to calculate the relevance score as a membership
function measuring the likelihood that a given image belongs to the relevant
class. In terms of probability, the supervised learning can thus be interpreted as
a density estimation problem. Ves et al. [22] assumed a multivariate Gaussian
distribution for user preferences and applied Bayesian learning on the Gaussian
mean and covariance. Wu et al. [130] modeled the membership function by Gaus-
sian mixtures and employed a Discriminant Expectation Maximization (D-EM)
algorithm which estimates the parameters of a generative model and meanwhile
finds the associated linear projection. Gaussian mixture models were also em-
ployed by Kherfi and Ziou in [58], where the negative examples were also taken
into account. The densities of individual features can be estimated by the Parzen
Window method [109]. A factorized joint density can then be obtained by as-
suming mutual independence of the features [4]. The membership functions can
be other than densities. In [64], Kushki et al. aggregated the individual Cauchy
memberships [51] which were calculated with five MPEG-7 descriptors. Alterna-
tively, the aggregated memberships can be obtained by fuzzy methodology [120].

From the machine learning point of view, the ranking problem is closely related
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to classification. Thus the relevance scores may be defined as the output of
such classifiers as Support Vector Machines (SVMs) [17]. Zhang et al. [137]
proposed to directly return the SVM classifier outputs as the relevance scores.
Tao et al. modified SVM by two methods, asymmetric bagging [118] and random
subspace [118, 116], which overcome two problems of relevance feedback, i.e. the
small training set and the asymmetry between positive and negative samples.
Instead of the raw SVM output, Hong et al. [44] proposed to rank the samples by
their distances to the classification hyperplane. Wang et al. further modified the
distances by SVM active learning embedding Euclidean search [126]. To attack
the imbalanced data set problem, Hoi et al. presented the Biased SVM which
adapts the 1-SVM method [42] by using double sphere hyperplanes. Note that
classifiers can easily be related to the membership approach through, for example,
the sigmoid function [127].

Another stream of ranking techniques is based on measuring the similarity be-
tween the query and the images in the database. In this setting, the query
can be represented by the user-provided starting image, but more often by a
point moving in the image feature space (e.g. [52, 32]). The Euclidean metric is
non-parametric and thus cannot be adapted according to relevance feedback. A
straightforward method to overcome this is to use weighted Euclidean distances,
where the supervised learning becomes tuning the weights [32]. Besides feature
weighting, the adaptive similarities can be calculated in a transformed space
through e.g. learning a kernel discriminative projection [11, 117] or building a
biased Marginal Convex Machine (MCM) [115]. In addition to Minkowski met-
rics, Gondra and Heisterkamp [30] proposed normalized information distances on
raw intensities by treating images as strings.

In relevance feedback learning, labeled images account for only a small portion
of a large image collection. Thus an effective way to overcome the problem of
a small training set is to utilize unlabeled data. Hertz et al. [41] proposed to
learn distance functions by semi-supervised boosting in a product space, where
classifiers are updated by a constant factor with unlabeled data. The augmenta-
tion of the data set can greatly help clustering and reveal the compact structure
before supervised learning [12, 41]. Another use of unlabeled data relies in con-
structing a regularization term which emphasizes the smoothness of the mapping
function. He et al. applied the above manifold ranking theory to image retrieval
with relevance feedback [38], and later generalized their method by initializing
a pseudo seed vector, based on neighborhood relationships [39]. The similarity
information among the images in a collection has also motivated a cluster-based
image retrieval technique [14]. This approach actually introduces a subsystem to
any CBIR systems and retrieves image clusters instead of a set of ordered images.
Similar subsystems can be found also in [74, 128].
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A school of thought, generally called long-term learning, has emerged in recent
years. Humans evaluate the similarity between images intelligently, bringing
semantic information in the made relevance assessments. The marking actions by
previous users can be seen as hidden annotations of the images. The annotations
may subsequently serve as cues for similarity in semantic contents of the images.
An idea, presented in [63] and borrowed from text retrieval, is to factorize the
query–image matrix by Latent Semantic Indexing (LSI) [68] and to construct a
statistical user interaction feature to be used alongside with the visual features.
Chan and King [10] utilized an SOM where the model vectors were modified
so that neurons containing similar images in the feedback are moved closer to
each other. Han et al. [34] proposed a memory learning framework where they
constructed a semantic correlation graph. With this graph their system can
calculate such indicators as authoritative rank and hidden semantic correlation
between image and feedback examples and propagate annotations from one image
to another. A classifier approach for long-term relevance feedback was proposed
by Hoi et al. [43], where the standard SVM algorithm is modified to handle noisy
labels.

2.3 Relevance feedback with Self-Organizing Maps

Most relevance feedback techniques, for example the ones described in Section
2.2.3, treat the feature space in a global manner. However, a global distance
measure or feature extraction technique which is advantageous in the vicinity
of a set of images similar to each other, may not produce favorable results for
images that are more dissimilar from one another.

In this section, we describe how relevance feedback can be implemented by using
multiple Self-Organizing Maps (SOMs). Contrary to most existing methods, the
SOM-based relevance feedback technique is local in the sense that it operates
only in the local neighborhoods of images marked positive or negative by the
user. Therefore, the method respects the nonlinear nature of image similarity
better. The method also dynamically produces an implicit weighting of different
features. The empirical results [66] indicate that the PicSOM CBIR system is
able to effectively utilize a set of parallel SOMs so that the combined retrieval
result exceeds the performance of any of the features used separately.
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2.3.1 Self-Organizing Map

An SOM consists of a (usually two-dimensional) regular lattice or grid of map
units. In the PicSOM system, SOM grid type for image retrieval is rectangular
[66, 63]. A model vector mi ∈ RM is associated with each map unit i. During the
training phase, a set of feature vectors is presented to the map multiple times and
the model vectors are modified to match the distribution and topological ordering
of the training data in the feature vector space. The fitting of the model is usually
carried out by a sequential regression process, where t = 0, 1, 2, . . . , N − 1 is the
step index: For each input sample x(t), first the index c(x) of the best-matching
unit (BMU) or the winner model mc(x)(t) is identified by the condition

∀i : ‖x(t)−mc(x)(t)‖ ≤ ‖x(t)−mi(t)‖ . (2.1)

The usual distance metric used here is the Euclidean distance. After finding the
BMU, a subset of the model vectors constituting a neighborhood centered around
the BMU node c(x) are updated as

mi(t+ 1) = mi(t) + h(t; c(x), i)(x(t)−mi(t)) . (2.2)

Here h(t; c(x), i) is the neighborhood function, a decreasing function of the dis-
tance between the c(x)-th and i-th nodes on the map grid. This regression is
reiterated over the available samples and the value of h(t; c(x), i) is allowed to
decrease in time to guarantee the convergence of the prototype vectors mi. Large
values of the neighborhood function h(t; c(x), i) in the beginning of the training
initialize the map and small values at later iterations are needed in fine-tuning.

The SOM algorithm has a number of important properties (see e.g. [37]) that
make it suitable for indexing image feature data. As a dimensionality reduction
tool, SOM summarizes and represents the image collection in a rather compact
manner. More importantly, the SOM grid provides a good approximation of the
input space in a way that preserves topological ordering, which is a useful property
lacking in basic clustering algorithms. This ordering is especially convenient for
efficient RF implementation as similar images reside in neighboring map units.

The search for the BMU dominates the computing time of the SOM algorithm
and makes training of large SOMs computationally too expensive especially if
the dimensionality of the input vectors is high. The basic algorithm uses linear
search, in which all map units must be evaluated to find the BMU. This makes
the complexity of the search O(τ), where τ is the number of map units. To speed
up the BMU search, [61] introduced a variant of SOM called the Tree Structured
Self-Organizing Map (TS-SOM) [61, 60]. TS-SOM is a tree-structured vector
quantization algorithm that uses normal SOMs in each of its hierarchical levels.
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It is loosely based on the traditional depth-first tree-search algorithm. Due to
the tree structure, the number of map units increases when moving downwards
the SOM levels of a TS-SOM. The search space for the BMU (2.1) on the
underlying SOM level is restricted to a fixed-sized portion just below the BMU
of the above SOM. Unlike most tree-structured algorithms, the search space is
not limited to the direct children of the upper-level BMU. Instead, the search
space can be set to include also neighboring nodes having different parent nodes in
the upper level. With the TS-SOM one can follow the hierarchical structure and
reduce the complexity of the search to O(log τ). Thus the reduced computational
requirements obtained by using the TS-SOM algorithm facilitate the creation and
use of large SOMs, needed for indexing huge image databases.

2.3.2 Relevance feedback in PicSOM

The indexing and relevance feedback techniques with SOMs form the backbone
of the PicSOM ICBIR system. In the experiments in Publications 1–3, the used
TS-SOM structure had three levels with sizes 4 × 4, 16 × 16, and 64 × 64 map
units. The training data consisted of 2409 feature vectors and each vector was
presented 100 times for the adaptation of each map level. After training a TS-
SOM, all images in the database were mapped in their BMUs at the bottom-most
level. This mapping of each TS-SOM thus forms an index of the images.

In each round of the image query, the PicSOM system presents the user a set
of images she or he has not seen before. The user is then expected to mark the
relevant image as positive, and the system implicitly interprets the unmarked
images as negative. With the TS-SOM index, it is straightforward to locate the
positive and negative images on each feature map. The map units are awarded a
positive impulse for every positive image mapped in them. Likewise, associated
negative images result in negative impulses. These positive and negative impulses
are scaled so that the total sum of all scores on each map is equal to zero.

SOM units get raw score value in each zero-sum sparse value field. Next, PicSOM
applies low-pass filtering on the SOM surface. Fig. 2.1 illustrates how the positive
and negative responses, displayed with white and black map units, respectively,
are first mapped on s SOM surface and how the responses are expanded in the
convolution. The relevance score of each image can then be obtained from the
convolved value of the BMU associated with the image. Laaksonen et al. [67]
showed that the scores obtained in this way actually form a discrete estimation
of the Bayesian decision.

When multiple features are used, the combined score for each image can be
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⇒

Figure 2.1: An example of how a SOM surface, on which the images
selected and rejected by the user are shown with white and black marks,
respectively, are convolved with a low-pass filter.

obtained most simply as just the sum of those from the individual feature maps.
Unseen images with highest combined scores will be displayed to the user in the
next round. This was justified [67] if the used features are independent. Yet,
the experiments in [66, 67] also suggest that PicSOM’s retrieval accuracy can
be increased by adding new features in the system even if the added feature is
highly correlated with one or more existing features in the sense of large mutual
information.

With the Bayes theorem, it can be shown that an RF learning algorithm should
increase the probability of relevance in the vicinity of images marked by the user
[67]. The same effect is obtained in PicSOM by the simple method of adding the
signed impulses caused by newly marked images to the distribution, convolving,
and renormalizing. Exactly the same is done for the distribution of non-relevant
images, and thus both the positive and negative sample distributions get tuned
in the query process.

One may argue that two cells far in the SOM may present more similar images
than some cells closer. Actually this seldom affects the PicSOM ranking. First,
two cells far in the SOM map are of little interest because (i) SOM usually
preserves local distances well; (ii) in retrieval only images with top ranking, i.e.
closest to the target, are returned in each round. Two dissimilar images may
be mapped to close SOM cells, which often happens in the cluster boundaries
which are of low density. However, the SOM training algorithm allocates only a
small number of cells for the low-density areas. Furthermore, the images in dense
areas, e.g. the cluster centers, are more likely to be displayed in early rounds.
Therefore, the probability of wrong behavior of PicSOM ranking is small.
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2.4 Evaluation of system performance

As content-based image retrieval is a particular type of IR, its system perfor-
mance can be evaluated by the metrics used for generic information retrieval.
One popularly adopted measurement metric is the plot of precision versus re-
call. Suppose r[j] is the cumulative number of relevant images retrieved after j
rounds; s is the total number of relevant images in the database, and n[j] is the
cumulative number of total images retrieved after j rounds, i.e. n[j] = j · m,
where m images are displayed in each round. The performance statistics recall
and precision [98] are then defined as:

recall[j] = r[j]/s, (2.3)
precision[j] = r[j]/n[j]. (2.4)

In the plot of precision versus recall, larger area under the precision curve indi-
cates better overall ranking.

Yet, interactive retrieval usually involves multiple rounds and the importance of
the rounds are asymmetric. It is often desired that all relevant images should
be retrieved in early rounds. Such performance difference can be emphasized by
Average-precision as illustrated in Publication 1.

average-precision[j] =
1
s

j∑
i=1

(cc[i] · precision[i]) (2.5)

where cc[i] is the relevant ratio in i-th round, i.e. the number of relevant images
shown in i-th round divided by m. A larger average-precision value indicates the
retrieval is better in early rounds.

The above conventional IR performance statistics concern all relevant items.
However, as will be discussed in Chapter 4, the importance of the first relevance
image is much more significant for ICBIR without initial user-provided images.
In Publications 1–3, a new evaluation metric has been proposed to address such
performance differences. Suppose N is the number of all images. Let j denote
the random variable for the position of the first relevant hit when using random
retrieval. It is not difficult to show that the mean of j is

%̃ ≡ E{j} = (N − s)/(s+ 1). (2.6)

Thus the improvement compared with the random retrieval can be quantified by
the following First Relevant Hit Advantage (FRHA) measurement:

FRHA = % =
%̃

i
=

N − s
i · (s+ 1)

, (2.7)
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where i ∈ {1, . . . , N − s + 1} is the position of the first relevant hit using the
retrieval method being evaluated. FRHA equals one when the retrieval is done
in a random manner and increases when the method is able to return the first
relevant image earlier. For example, it equals two when the first relevant hit
occurs in the position whose index is half of the expected index in the random
retrieval.

2.5 Retrieval by partial relevance

In most ICBIR systems, the relevance feedback is assumed to be consistent with
the underlying image ranking model. On the other hand, the user can freely use
any relevance criterion in mind, but the evaluation criterion is by no means input
to the RF learning algorithm. Consequently, the ranking at each iteration is only
suboptimal and more iterations are needed to accomplish successful retrieval.

2.5.1 Evaluation fatigue problem

The relevance feedback techniques try to reduce the semantic gap through user
interaction. Involving a human user in the procedure may however lead to the
evaluation fatigue problem. Systems that require a substantial amount of eval-
uation labor may cause the user getting tired and ceasing the search before the
retrieval goal is successfully attained.

Evaluation fatigue problem is the major challenge in interactive content-based im-
age retrieval. It becomes especially significant for precise searching tasks where
the relevant class is much smaller than the database size. In the interactive facial
image retrieval application, which will be discussed in Chapter 4, the user usually
seeks a target person with only two or three images while there are thousands
of candidates in the database. In this extreme, there may be few or no relevant
images displayed in the early rounds of interactive retrieval if the relevance cri-
terion is fixed to the exact membership in the target class. Consequently, the
retrieval would get stuck due to the no-positive-feedback problem. That is, only
negative or neutral responses are input to the RF learning, but they provide only
little semantic information about the target class. The iteration may therefore
progress in a random manner, which probably makes the user feel tired and cease
searching. To relieve the evaluation fatigue, an ICBIR system should allow the
user to input relevance information in various focuses. In turn, the RF learning
can better adapt towards the search goal.
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2.5.2 Refining relevance criterion

The evaluation fatigue problem discussed in Section 2.5.1 is caused by small
target classes and is mainly induced by the rigorous relevance criterion. The user
is unable to input knowledge about the retrieval goal at different focus levels. To
overcome the no-positive-feedback problem, one can divide the whole retrieval
process into multiple phases. A good ICBIR system should allow the user to use
relaxed relevance criteria in the early phases and later switch to more precise
ones.

However, most existing ICBIR systems do not accommodate such broad-to-
narrow search goal changes. Their RF algorithms inherently assume the rele-
vance criterion employed by the user remains unchanged. This strategy seems
to work well for simple broad category search like “buildings” or “birds”, but is
often problematic in precise target searches with narrow categories such as facial
images. Although the user can freely use any criterion in mind, the resulting
relevance feedback is not necessarily consistent with the underlying index and
learning algorithm.

2.5.3 Partial relevance

To support the above shift in relevance criterion, we implemented in the PicSOM
ICBIR system both exact relevance for membership in the precise target class
and partial relevance for membership in some wider semantic class. The former
criterion represents the ultimate query goal while the latter corresponds to a
certain limited property of the target.

An aspect of partial relevance is a descriptive domain that consists of a number
of semantic classes. For example, in the ethnic origin or race aspect there can
be three major classes: Asian, Black, and White. The following query procedure
illustrates how a user might look for images of a specific woman of Asian origin
by using partial relevance assessments in the first retrieval phase:

1. The system displays a random set of facial images.

2. If one of the subject images appears, the first retrieval phase terminates;
goto the optional second retrieval phase.

3. The user marks all images that depict Asian women as relevant, while
leaving the others unmarked.
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4. The system applies the retrieval algorithm, and displays the images with
the highest scores; goto step 2.

The system should also be able to learn partial relevance of multiple aspects in
parallel. A more concrete query example of interactive facial image retrieval of
this kind will be provided in Section 4.5.

It is worth to notice that partial relevance does not mean the metadata associated
with images. Instead, it is a means by which the user supplies the reason or
intention that is used in assessing relevance. A conventional CBIR system does
not accommodate partial relevance. The user specifies relevance of the images,
but the system does not know why. In the above example, the user assesses a facial
image as relevant because both the person in the image and the searched person
are Asian. However, without such reason information, the relevance feedback can
be meaningless or even harmful for the retrieval. For instance, if the underlying
system metric is based on eigenface features (see Section 3.1.1), which are known
to probably encode hairstyles (Publication 1), the relevance feedback algorithm
will consequently return answers irrelevant to the Asian race. Partial relevance
is proposed to address such a mismatch.

2.5.4 Filtering

For some partial relevance aspects, the semantic class labels take categorical val-
ues such as male and female in the aspect gender. It is thus intuitively appealing
to implement the partial relevance by filtering. Once the user has specified the
semantic classes of the target, the images which do not satisfy the partial rele-
vance criteria can be filtered out and never displayed to the user. Filtering can be
implemented in two different ways, either by using existing deterministic ground
truth information or by constructing feature-based classifiers.

There often exist metadata associated with images in a database. This meta-
data may contain useful ground truth information of the images. For example,
in interactive facial image retrieval, most face databases contain gender informa-
tion for each image. As the gender can be reliably remembered in most facial
image retrieval scenarios, we can filter out images of the wrong gender. This will
effectively reduce the processing time and evaluation labor.

For some aspects, e.g. the possible existence of mustache or eyeglasses, even
though there are no ground truths available in databases, most people have a
common understanding about the categorization. In such cases, it is feasible to
implement stochastic filtering by training a classifier. If a state-of-the-art clas-
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sifier works well for these aspects of partial relevance, one can use classification
techniques to construct the filters, which will further reduce the number of can-
didate images. Such filtering might prevent the appearance of the correct images
in some rare cases, but this can still be acceptable considering the significant
reduction of evaluation fatigue.

Filtering is a simple method that implements partial relevance. It is however not
applicable for some aspects where people do not have a common understanding
about the categorization. For example, the decision of racial class by appearance
may differ among people. Similar variability also holds for the categorization of
the hairstyle aspect. It is therefore impossible to implement filtering for such
fuzzy aspects. In the next chapter, a solution for handling such aspects will be
presented, where the supervised information is incorporated in constructing the
discriminative extension of the SOM-based index.
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Chapter 3

Discriminative Learning for
Images

Partial relevance works like a bridge enforcing the consistence between the search
goal and the relevance feedback learning algorithm. A user interface equipped
with partial relevance assessment allows the user to specify particular properties
of the target image. In the other end, the ranking according to partial rele-
vances requires discriminative machine learning on such properties of images.
Such learning makes use of some supervised training data to enhance inference
on high-level semantics of images. In this chapter, we address the learning as a
feature extraction procedure. The resulting image representations can enhance
the discriminative power of the PicSOM ranking technique described in Section
2.3. The inference can thus be more pertinent to the search goal using partial
relevance feedbacks.

3.1 Domain image representations

Digital images are originally stored as pixel arrays. However, directly using image
pixels is very inefficient for visual recognition. For example, a 32 × 32-sized
gray-level image, which looks only as small as an icon, leads to a feature vector
in a 1024-dimensional space. Finding patterns among a large number of such
vectors is clearly infeasible due to massive storage and computation requirements.
Moreover, pixel values as a visual feature are very sensitive to noise and varying
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imaging conditions such as shifts, rotations and scale changes.

Some visual features of images in a broad domain can be computed by using
certain image processing techniques. The conventional feature types, including
color, texture, and shape, have been extensively studied in many review arti-
cles as well as CBIR textbooks (see e.g. [71, 8]). MPEG-7, a standardization
initiative for describing multimedia content also follows this categorization. In
recent years, wavelet-based feature extraction, which analyzes image content in
multi-resolutions (see e.g. [20, 21]), has been introduced to obtain compressed
representation of images.

This thesis focuses on ICBIR systems for images in a narrow domain, e.g. facial
images. The above feature extraction methods which serve for general purposes
cannot capture the underlying statistical properties of such an image collection.
In the following we will address a number of dimensionality reduction approaches
which not only compute the compact image representations, but also encode a
certain characteristic of the image collection as a whole in the original space. In
this work we only consider grayscale images, while the discussion can be easily
extended to involve color information.

A vectorized image x can be viewed as a random variable in a high-dimensional
space RM . We may further assure that it has been normalized to zero mean by
subtracting its expected value. In projective feature extraction, the representa-
tion of the image x in a low-dimensional space is given by

y = WTx, (3.1)

where W is an M × R orthonormal matrix with R ≤ M . The orthonormal
subspace projection method is widely used in image representations because: (1)
the images can be encoded in a compact manner; (2) the decoding function can
be easily obtained by simply transposing the encoding projection matrix; and
(3) both encoding and decoding can be efficiently implemented with standard
mathematical software that supports matrix multiplication.

3.1.1 Eigenfeatures

Suppose that the zero-mean input data is given in the form of an M ×N matrix
X, each column xi for a vectorized sample. Principal Component Analysis (PCA)
finds an orthonormal projection matrix WPCA that minimizes the sample square
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construction error:

WPCA = arg max
WT W=I

N∑
i=1

‖xi −WWTxi‖2. (3.2)

The above optimization problem can be solved by eigenvalue decomposition:

SWPCA = WPCADPCA, (3.3)

where DPCA is a diagonal matrix with Dii the i-th eigenvalue of the sample data
covariance matrix S =

∑N
i=1 xixTi = XXT , with X = [x1,x2, . . . ,xN ].

As a widely used method in machine learning and signal processing, PCA has
a number of merits. The unique principal subspace can be identified in a single
step. The compression and decompression with a projection matrix can easily be
implemented. PCA is known for its denoising capability and performs robustly
in presence of outliers. Furthermore, it has been shown that the PCA objective is
a lower bound of K-means clustering [23] and PCA thus forms an approximation
in finding data clusters.

The features extracted through a PCA projection are called eigenfeatures. Since
1990s, this technique has been extensively used in computer vision problems
such as object detection (see e.g. [79]), face recognition [121] and fingerprint
preselection [53]. In particular, eigenfeatures of facial images are called eigenfaces
[121]. Note that the Discrete Cosine Transformation [31], the core of JPEG image
compression standard [91, 125], is an approximation of PCA if the images are not
constrained to a specific domain.

3.1.2 Non-negative projections

It was recently pointed out that the positivity or non-negativity of a linear ex-
pansion is a very powerful constraint that seems to lead to sparse representations
of images [69, 70]. This kind of representations have some biological significance,
as the sparse features seem to correspond to the receptive fields of simple cells in
the area V1 of the mammalian visual cortex [69].

Incorporating the non-negativity constraint to the PCA objective, one can obtain
the Projective Non-negative Matrix Factorization (P-NMF) method ([134] and
Publication 7). Suppose that all elements of the input data matrix are non-
negative. P-NMF equipped with the Frobenius matrix norm solves the following
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optimization problem:

minimize
W≥0

M∑
m=1

N∑
i=1

[
X−WWTX

]2
mi

=
N∑
i=1

‖xi −WWTxi‖2. (3.4)

A locally optimal W can be obtained by iteratively applying the update rule

Wmr ←Wmr

2
[
XXTW

]
mr

[WWTXXTW]mr + [XXTWWTW]mr
, (3.5)

where m = 1, . . . ,M and r = 1, . . . , R. Compared with the PCA objective 3.2,
the P-NMF optimization does not involve explicit orthonormalization. However,
empirical results show that P-NMF implicitly enforces orthonormality on the
transformation matrix W ([134] and Publications 6 & 7), which is insensitive to
random initialization of W (Publications 6 & 7).

P-NMF can be viewed as an improved variant of Non-negative Matrix Factoriza-
tion (NMF) proposed by Lee and Seung [69, 70]. The new method differs from
NMF in that it replaces the weight matrix in NMF with the inner product of the
base vectors and the input images. Unlike other variants of NMF, P-NMF does
not involve any regularization terms or trade-off parameters, but is still able to
learn more spatially localized, part-based representations of visual patterns.

The objective for learning a non-negative projection is not necessarily restricted
to (3.4). In Publication 6 we showed that by using Oja’s learning rule [83] a great
variety of additive learning rules can easily be converted to corresponding mul-
tiplicative versions that maintain the non-negativity after each iteration. With
this technique, almost identical results to P-NMF can be obtained by imposing
the non-negativity constraint on linear Hebbian networks. The derivation of our
approach provides a sound interpretation of learning non-negative projection ma-
trices based on iterative multiplicative updates. This can be interpreted as a kind
of Hebbian learning with normalization.

3.1.3 Other representation methods

The PCA method only utilizes the first and second order statistics, which might
not be sufficient for many non-Gaussian distributed data sets. Independent Com-
ponent Analysis (ICA) [48] takes into account also the higher-order statistics by
e.g. maximizing the non-Gaussianity of the projected data. Trained with natural
image blocks, the projection basis identified by ICA looks like Gabor filters and
coincides with wavelet results [48]. It is also reported that ICA is applicable to
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computer vision problems such as face recognition [5, 72]. However, ICA requires
a large amount of training data to accurately estimate the high-order statistics
and is thus sensitive to the curse of dimensionality. In practice, prewhitening with
dimensionality reduction is required before ICA learning. Furthermore, the ICA
rotation does not alter the relationships among data points in the prewhitened
space and thus produces only little discriminative information for subsequent
pattern recognition.

Images in a narrow domain can be seen as samples taken from a manifold accord-
ing to certain probabilities. In recent years, manifold learning methods such as
Isomap [119], Laplacian Eigenmap [6], and Local Tangent Space Alignment [140]
have been introduced to find a low-dimensional embedding to represent the data
samples. The above nonlinear methods, however, are only applicable to the train-
ing set and cannot extract features for newly coming data. Linearization has later
been incorporated to address this problem [40, 138], where the transformation is
restricted to centering and projections. Although manifold learning algorithms
have been reported to produce good performance for some data sets, they assume
the data manifold is sampled densely enough. This might be problematic if the
training data is scarce. For high-dimensional data like images, most manifold
learning methods require PCA as a preprocessing step (see. e.g. [40, 138]).

Many linear projective methods are readily extended to their nonlinear version
by using the kernel trick [106]. The resulting algorithms may possess better ex-
pressive capability if an appropriate kernel is used. The kernel trick, nevertheless,
requires extra effort to select among kernel types and to adjust the parameters
associated with the kernel, which might lead to an even more complicated prob-
lem.

In recent years segmentation- or region-based based image representations have
become an active research field. Contrasting to approaches that use only global
features of images, the region-based methods, e.g. [59, 65, 75, 94, 95, 96, 97, 124],
attempt to partition an image into a number of segments in which the pixels share
homogeneous color or texture. The main objective of using region features is to
enhance the ability of capturing user’s perception of image content [59]. However,
fully automated segmentation of images into objects itself is an unsolved problem.
Even in fairly specialized domains, fully automated segmentation causes many
problems and is usually not easy to be realized [80]. Especially, the shape feature
of each segment is highly unreliable and thus often discarded in the representation
(e.g. [59, 75]). In addition, it is more difficult to encode the spatial relationship
among segments than pixels. Therefore, many existing region-based methods
(e.g. [59, 65, 75, 94, 95, 124]) only treat an image as a bag of segments. Match-
ing between two such unordered sets requires more computationally demanding
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techniques such as the earth mover’s distance [101].

Local descriptors are another popularly used approach to obtain certain invariant
features of images. The Scale Invariant Feature Transform (SIFT) descriptor [76]
is a 3D histogram of gradient locations and orientations where the contribution to
location and orientation bins are weighted by the gradient magnitude and a Gaus-
sian window overlaid over the region. Many variants of SIFT such as the GLOH
descriptor [78] and PCA-SIFT [57] have later been proposed. Besides so-called
interest point descriptors for general images, local descriptors for certain image
types exist, for instance, oriented chamfer matching [107] for contour fragments,
shape context [7] for shape images, and Gabor filters (e.g. [33]), cosine-modulated
wavelets [62], and Local Binary Patterns (LBP) [84] for textures. LBP has later
been extended to other vision problems such as face recognition [1] and facial
expression recognition [141].

Local descriptors provide certain robustness in object detection and classification,
of which the research are albeit still ongoing and facing one or more difficulties.
First, interest point descriptors confront the costly matching problem as there
are variable numbers of unordered interest points. Second, many local image
descriptor algorithms incorporate some form of histogramming [129], which only
works for image patches of certain sizes. An histogram is inaccurate for too small
patches while losing spatial information for too large patches, which prevents the
use of local descriptors in multi-resolutive scenarios. Moreover, dimensionality
reduction is usually not of concern in the local descriptor approaches. The length
of image coding using such methods is often comparable to the raw representa-
tion (e.g. [1]) or even much larger than the latter (e.g. [73, 139]). This would
make the subsequent supervised learning ill-posed and computationally expen-
sive. Additional feature selection or subsampling might be needed to obtain a
compact representation (e.g.[73]).

3.2 Discriminant analysis

Discriminant Analysis (DA) in general aims at extracting discriminative compo-
nents of data. Consider a supervised data set which consists of pairs (xi, ci),
i = 1, . . . , N , where xi ∈ RM is the primary data of zero mean, and the auxil-
iary data ci takes categorical values that are numbered from 1 to Q. We seek
for an M × R matrix W by which the primary data xi are projected into a
lower-dimensional space yi = WTxi. The objective is to maximize a certain
discriminative criterion in the projected space.
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3.2.1 Fisher Discriminant Analysis

In Publication 3, the Fisher’s Linear Discriminant Analysis (LDA) [27] was ap-
plied for discriminative feature extraction. Let

SB =
1
Q

Q∑
c=1

Nc(µc − µ)(µc − µ)T (3.6)

denote the between-class scatter matrix and

SW =
1
N

Q∑
c=1

∑
i∈Ic

(xi − µc)(xi − µc)
T (3.7)

the within-class scatter matrix, where Nc and Ic are the number and indices of the
samples in class c, respectively, with µc = 1

Nc

∑
i∈Ic

xi and µ = 1
N

∑N
i=1 xi = 0.

Then the projection matrix WLDA can be obtained by solving the eigenproblem

S−1
W SBWLDA = WLDADLDA (3.8)

with the largest r eigenvalues of S−1
W SB in the diagonal of DLDA and the associ-

ated eigenvectors in the columns of WLDA.

To reduce noise and computational cost, the LDA method is often accompanied
with an unsupervised dimensionality reduction by PCA. Given the covariance
matrix S of the primary data, PCA produces a matrix WPCA whose columns
are the eigenvectors of S corresponding to the largest eigenvalues. One can then
obtain the joint PCA+LDA projection

yi = WTxi = WT
LDAWT

PCAxi. (3.9)

When applied to the face recognition problem, the projection method (3.9) is
named Fisherface, where the extracted features are called Fisherfaces.

3.2.2 Parzen Discriminant Analysis

The PCA+LDA method is attractive for its simplicity, but its performance is
restricted by the implicit assumption that each class has a single Gaussian dis-
tribution with a common variance. Moreover, the discriminative information
may be lost during the unsupervised PCA preprocessing. Although many vari-
ants of LDA (e.g. [46, 47, 15]) have been proposed, they use only the first- and
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second-order statistics of the class distributions while discarding the higher-order
statistics.

In Publication 5 we have proposed a novel DA method that maximizes the Parzen
Discriminant Analysis (PDA) objective:

JPDA(W) = JIDA(W)− λF(W), (3.10)

where

JIDA(W) =
1
2

N∑
i=1

log p(ci|WTxi) (3.11)

is the Informative Discriminant Analysis (IDA) objective [87] that measures the
discriminative information in the projected space.

The regularization term F(W) = 1
2 trace

(
WTΩW

)
emphasizes the smooth-

ness prior of images [35], where the constant matrix Ω is constructed by Ωst =
N (d(s, t); ρ). Here d(s, t) is the 2-D Euclidean distance of the pixel locations s
and t, and N the zero-mean normal distribution. The variance parameter ρ con-
trols the neighborhood size in smoothing and its value depends on the resolution
of the images used. We have found that ρ ∈ (0.3, 0.8) works fine with 32 × 32-
and 46 × 56-sized facial images in our experiments to be detailed in Chapter 4.
It is not difficult to see that trace(WTΩW) is an approximated version of the
Laplacian smoothness constraint used in [35]. The feature extraction method
is called Parzenface when PDA is applied to the face recognition problem as in
Publication 5 and Chapter 4.

Denoting again yi = WTxi, the IDA objective can be rewritten by the Bayes
theorem as:

JIDA(W) =
1
2

[
N∑
i=1

log
p(yi|ci)
p(yi)

+
N∑
i=1

log p(ci)

]
. (3.12)

If we estimate p(yi|ci) and p(yi) by the Parzen window method, the objective
becomes

JIDA(W) =
1
2

N∑
i=1

log
N∑
j=1

φijeij − 1
2

N∑
i=1

log
N∑
j=1

eij + const, (3.13)

= J c − J + const. (3.14)

where φij = δ(ci, cj), and eij = (1 − δ(i, j)) exp
(
−‖yi−yj‖2

2σ2

)
, with σ a positive

parameter which controls the Parzen window width.
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3.2.3 Fuzzy discriminant analysis

Conventional DA can only handle hard categorization problems where the prob-
ability that a sample belongs to a class is either 1 or 0. However, the partial
relevance of some aspects often requires intermediate membership probabilities.
For example, in facial image retrieval hairstyle plays an important role for rec-
ognizing a person. Although there are people of typically long hair or short hair,
one can always find many different in-between cases. The decision whether such
an intermediate sample belongs to the long or to the short class varies between
different assignments. Therefore it is not enough to implement the categorization
by a binary scale since it might induce an even more severe semantic gap.

The problem can be solved by introducing a fuzzy set [136] whose membership
function quantifies the grade of membership of a facial image in a semantic class.
This can be implemented by an N ×Q matrix M with the ic-th element.

Mic = membership of xi to class c. (3.15)

In practice, annotating the samples with continuous labels requires too much
labor and a discrete approximation is therefore usually used instead.

With this modification we can slightly extend the LDA algorithm for fuzzy cases
by replacing the within-class scatter matrix and class means by

S̃W =
1
N

Q∑
c=1

N∑
i=1

Mic(xi − µ̃c)(xi − µ̃c)
T , (3.16)

where µ̃c =
(∑N

i=1Micxi
)
/
(∑N

i=1Mic

)
. For PDA, the fuzzy extension just

replaces φij in (3.13) by φ̃ij = 1 − ξij/Ξ, where ξij =
∑Q
c=1 |Mic −Mjc| is the

total labeling difference between the i-th and j-th samples, and Ξ = max{ξij} is
the maximum difference over all (i, j) for normalization.

3.3 Optimization of PDA

The optimization of Parzen Discriminant Analysis requires more computation
than LDA. In [87], Peltonen and Kaski employed the stochastic gradient ascent
method to optimize the IDA objective, but their algorithm runs rather slowly.
Furthermore, to obtain an orthonormal transformation matrix, they employed a
reparameterization based on Givens rotation, which even aggravates the compu-
tation and prevents its application to high-dimensional data. Peltonen et al. [89]
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later proposed a modified version to speed up the computation by using a small
number of Gaussian mixtures instead of the Parzen method. This nevertheless
loses the advantage of nonparametric estimation. One has to insert additional
EM iterations before computing the gradient, and how to select an appropriate
number of Gaussians is unclear.

In Publications 5 and 8, we have proposed a number of advances in the IDA
optimization while preserving the advantages of Parzen estimations.

3.3.1 Computing batch gradients

The gradient of JIDA(W) as defined in ([87] and used in Publication 5) is:

∇JIDA(W) =
1
2

N∑
i=1

N∑
j=1

Hij (xi − xj) (xi − xj)
T W, (3.17)

where

Hij = − 1
σ2

(
φijeij∑N
s=1 φiseis

− eij∑N
s=1 eis

)
. (3.18)

Apparently the computation is too expensive if it goes through all the sample
pairs. However, in Publication 5 we have shown that the gradient can be com-
puted by matrix operations after the formula rearranged:

∇JIDA(W) = X(D−H)XTW, (3.19)

where D is a diagonal matrix with Dii =
∑N
j=1Hij . As there exist fast algorithms

that implement matrix multiplication [29], the gradient computation (3.19) runs
much faster than the original IDA optimization algorithm.

3.3.2 Geodesic flows in the Stiefel manifold

Orthonormality of the transformation matrix in (3.1) is preferred in feature ex-
traction because it enforces the matrix to encode the intrinsic subspace in the
most economic way. The orthonormality constraint also prevents the learning
algorithm from falling into some trivial local minima.

The set of M × R-sized real orthonormal matrices forms a Stiefel manifold
St(M,R) [36]. Given the gradient ∇ of J at W, it has been shown [82] that
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the natural gradient in such a manifold is given by

gradSt(M,R)
W J = ∇−W∇TW. (3.20)

An approximated geodesic learning flow with the starting point W is then

Wnew = expm
(
η
(∇WT −W∇T ))W, (3.21)

where expm represents the matrix exponential [45] and η a usually small positive
learning rate. In Publication 5 we have applied the geodesic flow technique to
the conventional gradients (3.17). Yet, the update rule (3.21) can be applied
to learning directions other than gradients, including the Principal Whitened
Gradients proposed in Publication 8 and reviewed next.

3.3.3 Principal Whitened Gradient

In Publication 5 we directly applied the steepest ascent method [113] with gra-
dients calculated by (3.19). The resulting optimization speed is only mediocre
because the parameter space is not Euclidean. It has been pointed out by Amari
that the geometry of the Riemannian space must be taken into account when
calculating the learning directions [2]. In Publication 8 we derived a more ef-
ficient optimization method that approximates a geodesic flow and maximizes
local information change at each iteration.

Many statistical inference problems can be reduced to probability density es-
timation. Information geometry proposed by Amari [3] studies a manifold of
parametric probability densities p(x; θ), where the Riemannian metric is defined
by the Fisher information matrix [105]

[G(θ)]ij = E

{
∂`(x; θ)
∂θi

∂`(x; θ)
∂θj

}
. (3.22)

Here `(x; θ) ≡ − log p(x; θ). Amari also applied the natural gradient update rule

θnew = θ − ηG(θ)−1∇J (θ) (3.23)

for the optimization in the information geometry by using J (θ) = `(x; θ) as the
online objective function which is equivalent to the maximum likelihood approach
[2]. Similarly, the batch objective function can be defined to be the empirical
mean of `(xi; θ) over i.

It is worth to notice that the Fisher information matrix is the covariance of ordi-
nary online gradients. In Publication 8, it has been shown that this property is
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invariant of linear transformations in the sense that the Fisher information met-
ric measures the local Kullback-Leibler divergence between the current estimate
and updated estimates. This allows us to look for a proper linear transformation
matrix F for facilitating the optimization. By setting F as the whitening matrix
G−

1
2 , the transformed Fisher information metric becomes identity. That is, the

whitening matrix locally transforms the Riemannian space into its Euclidean em-
bedding, which leads to an ordinary steepest descent update rule in the whitened
tangent space:

θnew = θ − η∇̃J (θ), (3.24)

where ∇̃J (θ) = G(θ)−
1
2∇J (θ) is the whitened gradient. The above update rule

has a form similar to the natural gradient one (3.23) except the square root opera-
tion on the eigenvalues of the Fisher information matrix at each iteration. Such a
difference brings two distinguished advantages. First, the additive updates using
(3.24) better approximate the geodesic flow to the optimum because additive up-
dates are equivalent to exponential maps when the Riemannian metric becomes
Euclidean. Second, selecting the learning rate for the whitened gradient updates
is as easy as for the ordinary steepest descent approach because η in (3.24) is
independent of the local Riemannian metric.

Another strategy to improve the natural gradient is to remove the minor com-
ponents during the whitening procedure. In Publication 8, it has been shown
that the principal direction that maximizes the variance of the projected gra-
dient coincides with the one that maximizes local information change. By this
motivation, we preserve only the principal components and discard the minor
ones that are probably irrelevant for the true learning direction. The whitening
procedure through e.g. singular value decomposition thus runs much faster than
inverting the whole matrix G when the number of principal components is far less
than the dimensionality of θ [29]. Furthermore, we proved in Publication 8 that
the Fisher information matrix is always singular when optimizing an objective of
the form like (3.12) if W as the parameter consists of multiple columns. In this
case, dimensionality reduction is therefore necessary during the whitening stage.
We thus obtained the Principal Whitened Gradient (PWG) update rule:

θnew = θ − ηĜ(θ)−
1
2∇J (θ), (3.25)

where Ĝ(θ)−
1
2 is the whitened matrix with only principal components.

The Principal Whitened Gradient method can be applied to the IDA optimiza-



3.4. Discriminative Self-Organizing Maps 47

tion. Let us first separate the class-dependent and -independent parts in (3.17):

∇JIDA(W) =
1
2

Q∑
k=1

N∑
i=1

N∑
j=1

Bkij (xi − xj) (xi − xj)
T W

− 1
2

N∑
i=1

N∑
j=1

Bij (xi − xj) (xi − xj)
T W, (3.26)

where

Bkij = −δ(ci, k)
σ2

φijeij∑N
s=1 φiseis

, (3.27)

Bij = − 1
σ2

eij∑N
s=1 eis

. (3.28)

Denote w a column of W for notational simplicity. After some mathematical
manipulations, the online gradients of J with respect to w can be obtained from
the columns of

X
[
diag(XTw) + XTw1T ◦BT − diag(BXTw)−BTdiag(XTw)

]
, (3.29)

where diag(a) creates a diagonal matrix A from a vector a with Aii = ai, 1 is
the M -dimensional vector with all elements equal to one, and ◦ stands for the
element-wise product. The online gradients for the k-th class can be obtained
by similar calculation with Bk. The above calculation is repeated for each col-
umn of W. With the online gradients, one can compute the Fisher matrices
G and Gk, k = 1, . . . , Q. Then the learning direction is the vectorized repre-
sentation of ∇JIDA(W) left-multiplied by the principal whitened components of
G−∑k p(k)Gk.

3.4 Discriminative Self-Organizing Maps

As discussed in Section 2.5.4, filtering by ground truths or classifiers is only
suitable for the aspects with rigorous classification. However, for some aspects
like race or hairstyles the categorization by different users may greatly vary. In
these cases, the classification boundaries are not rigorous but vague. Filtering by
hard classifiers would therefore prevent the appearance of many relevant images.

In Publications 3, a novel method which adaptively learns partial relevance dur-
ing the interactive retrieval has been proposed. The solution reuses the PicSOM
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framework by just replacing the normal SOMs by aspect-oriented feature maps
called Discriminative Self-Organizing Maps (DSOMs), which are of enhanced dis-
criminative power by incorporating the supervised information. In other words,
a DSOM for a specific aspect is a Self-Organizing Map on which the semantic
classes are densely spread in nearly separate areas. Figure 4.3 (b-d) in Section
4.4 visualizes the concept of DSOMs on two semantic classes, race:Asian and
race:non-Asian.

In a DSOM, the images of a semantic class are very likely connected to map
units that situate nearby. If some images in the semantic class are displayed
and marked as relevant, PicSOM’s relevance feedback learning algorithm on the
DSOM will most likely award higher scores to the other images of the same class,
and then show these images to the user in the imminent rounds.

Different ways for obtaining a DSOM exist. One can replace the Euclidean metric
in the normal SOM training by a Riemannian one that incorporates the super-
vised information [55, 90, 88]. The resulting learning metric approach however
requires modifying the SOM learning algorithm. In addition, its training and
inference are computationally more expensive. A more straightforward method
is to apply supervised learning as a preprocessing step before the SOM training.
This work employs the latter approach because it requires no change in the SOM
training algorithm and in PicSOM’s online query implementation. Given the
projected feature vectors yi = WTxi. The normal SOM training described in
Section 2.3.1 can then be performed in the RR subspace with the yi vectors to
generate a Discriminative SOM.
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Chapter 4

Interactive Facial Image
Retrieval

Biometric identification by visual appearance is helpful for searching, for example,
a criminal or a lost person. The task is to recover a pictorial presentation of the
target subject. The procedure is usually done in an interactive manner if only an
eyewitness’s recalling is available. A satisfying facial image can then hopefully
be obtained after multiple rounds of interaction.

This chapter demonstrates the application of the discriminative learning tech-
niques described in the previous chapters which adapt the PicSOM ICBIR sys-
tem towards a satisfactory interactive facial image retrieval system. Simulations
on the FERET database are provided, including a concrete query example and
benchmark test results. The empirical study indicates that the occurrence of the
first subject hit can be significantly speeded up in the improved PicSOM system.

4.1 Related work

The history of interactive facial appearance acquisition can be traced back to
decades ago, far before computers were available. A human portraitist drew
a picture according to the appearance description by the eyewitness. Due to
descriptive gaps, a face-to-face discussion between the portraitist and the eye-
witness is necessary to ensure the quality of the drawing. The portraitist must
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be professionally trained because the drawing work as well as the discussion is
highly skillful. Unfortunately, such a professional drawer might not be available
in urgent cases. Furthermore, the interactive drawing procedure usually takes too
much time and the eyewitness may feel tired or find the procedure unpleasant.

The face drawing work can be approximated by using composition methods, where
the face is divided into several parts such as the mouth, nose, eyes, jaw and hair.
In this scenario, the eyewitness is asked to select among several transparencies
of each facial part. A face collage is then obtained by piling up the selected
face parts. With the development of computer imaging, the composition quality
can be improved by using a face fusing software such as E-FIT1, FACES2, and
FACETTE3. No discussion between the eyewitness and a face expert is needed.
The witness specifies the types for all facial parts, and then the system fuses these
parts and returns a face-like composite. If the returned figure is not satisfactory,
the eyewitness has to change one or more facial parts and to repeat the fusing.
Although composite methods are popularly used, they have several significant
drawbacks. The primary difficulty of using such a system is the evaluation fatigue
problem which has been discussed in Section 2.5.1. The composite approach
requires the user to choose among hundreds or even thousands of facial parts,
but in many cases the eyewitness’ recalling is not strong enough to identify the
exact type of each part. Thus the user must resort to a trial-and-error procedure
and probably gets tired in the time-consuming process. Another shortcoming
of the composition systems is that as the created facial images are virtual they
cannot be coupled with the identity information of the depicted person.

An alternative to the above methods, Interactive Facial Image Retrieval (IFIR)
seeks images that depict the target subject from a large collection of genuine face
images based on relevance feedback from the user. Such example-based systems
output facial images of real persons instead of merely face-like composites. That
is, it is straightforward for IFIR systems to return the identity associated with the
output image, by which one can obtain more relevant images or other personal
information about the person. Moreover, unlike the ad hoc fusing approach that
requires a great deal of prior knowledge about the facial parts, an IFIR system can
be built as an agnostic solution of content-based image retrieval. Many present
CBIR techniques can thus be applied to improve the performance of IFIR.

Some IFIR approaches have emerged in recent years. The FACERET system
proposed by Ruiz-del-Solar and Navarrete [103] calculates a ranking for images
on a single SOM trained with eigenface features [121]. In [135], Yuen and Man

1http://www.efitforwindows.com/
2http://www.iqbiometrix.com/
3http://www.facette.com
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combined the face sketch recognition and IFIR techniques, where the relevance
feedback learning is performed by the Fisher’s Linear Discriminant Analysis [27].
An interactive mental face retrieval system by Fang et al. maximizes the mutual
information between the target and the responses to the displayed images [25].
However, the above methods only provide heuristic solutions under an ideal re-
sponse model in which the user’s choice is perfectly consistent with the system
metric. In practice, the user’s selection criteria can be arbitrary and such con-
sistence may not hold. Thus, most existing IFIR systems may fail to return an
image of the target subject in an acceptable number of rounds.

4.2 Two-phase interactive facial image retrieval

Interactive facial image retrieval aims at finding all images of a specific subject
in a facial image database. The whole retrieval procedure can be divided into
two independent phases as already discussed in Section 2.5.2: (1) looking for one
of the images that depict the subject, and (2) retrieving other images of that
subject.

The major challenge of the IFIR problem lies in the first phase. Unlike CBIR
systems on general images, the query precision on facial images suffers from the
inherent problem of extremely small class sizes, as discussed in Publication 2. In
a popular facial image collection, FERET [93], most subjects possess only two
frontal images. As there are 2409 images of 867 subjects in the FERET database,
the average a priori probability of each subject is close to 0.001. If only images
that depict the correct person are regarded as relevant, many zero pages (i.e. all
images in these rounds are non-relevant) will be displayed before the first relevant
image emerges. This is because the negative responses from the user in the early
retrieval rounds provide only little semantic information and—as a result—the
iteration progresses in a nearly random manner. The first retrieval phase finishes
when the first subject hit appears. Therefore, making the emergence of the hit
as fast as possible is critical for the success of interactive facial image retrieval.

The retrieval in the second phase is of minor research interest if the identity
of each portrayed subject is also stored in the database. By this identity one
can easily locate the other images of the same subject if they really are needed
at all. If such information is not available, the second phase can optionally be
treated as a face recognition problem—looking for the most similar faces of the
first-found relevant image. Only the interactive approach to obtain the rest of
the images depicting the target subject will be in the topic of this thesis. The
interactive retrieval allows inclusion of some images of other subjects, but close
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Figure 4.1: System diagram for the two-phase interactive facial image
retrieval.

to the eyewitness’ recalling, as well as exclusion of faces belonging to the target
subject, but unfamiliar to the eyewitness. In many cases, the interactive approach
in the second phase can serve as a supplemental verification method and enhance
the robustness of the retrieval.

The system diagram shown in Figure 4.1 illustrates the process flow of two-phase
interactive facial image retrieval. First in Phase 1a the user supplies the partial
relevance specification by choosing the aspects the eyewitness remembers, such as
gender or race. For the selected aspects with rigorous categorization, the user also
specifies the attributes that indicate the semantic class membership. The system
then employs the corresponding deterministic or stochastic filters to preselect the
facial image candidates that can be displayed to the user. For the aspects with
vague categorizations, the system loads the corresponding aspect-oriented image
indices. Then in Phase 1b the iterative query by pictorial examples starts, in
which the user provides partial relevance information at each round. The system
calculates the ranking by using these feedbacks and then displays the unseen
images with the highest scores. Such interaction proceeds until one of the correct
images is found. The retrieval in Phase 2 is carried out in a similar manner
except the relevance feedback is given at subject level and the image indices
become subject-oriented.

In other words, the extended PicSOM system implements from-coarse-to-fine
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aspect semantic classes (images/subjects) method raw feature
gender male (1495/501) female (914/366) ground —

truth
eyeglasses yes (262/126) no (2147/741) SVM innerface
mustache yes (256/81) no (2153/786) SVM innerface
beard yes (144/51) no (2265/816) SVM mpegface
race white (1541/558) Asian (388/131) DSOM innerface

black (199/72) misc (371/106)
hairstyle (see Table 4.2) DSOM mpegface
all 2409/867

Table 4.1: Statistics of the used aspects and respective semantic classes.

IFIR: 1) Images are first filtered using their associated textual metadata; 2) The
qualified image candidates are then filtered by highly accurate classifiers; 3) The
qualified images after the filterings 1) and 2) are interactively retrieved with
DSOMs. In Section 4.6 we shall see that the evaluation labor in the first retrieval
phase can be significantly reduced using such a cascade-like framework.

4.3 Data

We have used the FERET database [93] of facial images to evaluate the discrim-
inative learning techniques described in Chapter 3 within the PicSOM system.
After face segmentation, 2409 frontal facial images (poses “fa” and “fb”) of 867
subjects were stored in the database for the experiments. The average number of
images belonging to a subject is 2.78, and most subjects have only two images.

We used the ground truth data of five deterministic aspects from the FERET
collection: gender, eyeglasses, mustache, beard and race. The statistics of the
respective semantic classes are shown in Table 4.1. In addition, we manually
labeled four fuzzy hairstyles of the FERET images. The images were categorized
into three groups4: Yes, In-between or No, according to the ternary membership
scale of each hairstyle long, short, bald or capped, of which the statistics are shown
in Table 4.2. For example, the typically bald faces were labeled as bald:Yes, the
typically non-bald ones as bald:No group, and the unsure ones as bald:In-between
group. We then calculated the class matrix (3.15) by such grouping information:
for class c, Mic equals 1, 1/2 or 0 if the i-th image is labeled Yes, In-between or
No, respectively.

4available in http://www.cis.hut.fi/projects/cbir/hairstyles.zip
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hairstyle labeling statistics (images)
long Yes (469) In-between (317) No (1623)
short Yes (1240) In-between (515) No (654)
bald Yes (153) In-between (170) No (2086)
capped Yes (32) In-between (0) No (2377)

Table 4.2: Statistics of the hairstyle semantic classes.

Figure 4.2: Preprocessed example images from FERET. Top: mpegfaces
cropped according to the MPEG-7 standard. Bottom: innerfaces of the
same images.

In our experiments the coordinates of the facial parts (eyes, nose and mouth)
were acquired from the ground truth data of the FERET collection, with which
we calibrated the head rotation so that all faces are upright. Afterwards, all face
boxes were normalized to the same size 46×56, i.e. M = 2576, with fixed locations
for the left eye (31,24) and the right eye (16,24) in accordance to the MPEG-7
standard [77]. To reduce irrelevant variability, we also used the inner part of
faces that are normalized to size 32× 32, i.e. M = 1024, with fixed locations for
the left eye (26,9) and the right eye (7,9). Later we will call these two kinds of
raw features as mpegfaces and innerfaces. Example FERET images after these
normalizations are shown in Figure 4.2.

In our experiments, we supposed the gender information is available for all images.
Thus the images of wrong gender could accurately be filtered out. For the other
aspects, half of the data was used for training and the rest for testing. The
division of the subsets was based on subjects. That is, the images of each subject
appear either in the training set or testing set, but not in both. Such division can
better reveal the generalization performance of a supervised learning method. In
the training and testing sets we had images of 434 and 433 subjects, respectively.

We implemented the filtering by two-class SVM classifiers for eyeglasses, mustache
and beard, and applied the DSOM technique to the partial relevance of race and
hairstyle. The parameters in the supervised learning methods were obtained by 5-
fold cross-validations with the training set. The raw features used for the aspects
are shown in Table 4.1.
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4.4 Training of DSOMs

For the DSOMs of race and hairstyle, we first obtained the projection matrix
W of (3.1) by applying discriminant analysis to the training data of zero-mean.
All images, both training and testing, were then projected to an R-dimensional
space, in which we performed a normal SOM training (2.2) with the Euclidean
metric. We have compared two discriminant analysis methods, PCA+LDA (3.9)
and PDA (3.10), for each aspect. For PCA+LDA we set the number of principal
components to 200, which captures 95% of the variance of the training images.
LDA outputs at most two discriminants for race and three for hairstyle. Never-
theless, we found that two discriminants for hairstyle perform better than three
by the trained SOM, probably because the capped class is very small. Therefore
we set the number of discriminants of both aspects to two. The PDA learning
started from the PCA+LDA results. We have used TS-SOMs of three levels of
sizes 4× 4, 16× 16, and 64× 64 units.

The images of the testing set are visualized on the trained DSOMs in Figure
4.3. The SOM trained with eigenfaces (Figure 4.3a) has poor discrimination in
separating the races (white and black dots) as the white dots corresponding to
Asian faces scatter all over the feature map. For the DSOM trained by using
PCA+LDA (Figure 4.3b), one can perceive that the Asian class mainly resides
in the upper part, especially in the upper right corner of the map, but there are
still many outliers that drift away and are mixed with the non-Asian faces. The
discrimination is further improved by the Parzen Discriminant Analysis described
in Section 3.2.2. There are much fewer outliers in Figure 4.3c and the Asian class
distributes more densely in the upper right corner. Figure 4.3d illustrates the
faces in the DSOM using PDA features. It can be seen that the typical images of
Asian, Black, and White distribute separately in the upper right corner, upper
left corner and the lower part, respectively. The in-between images can be found
around the class boundaries.

4.5 A query example

In this section we provide a query example to illustrate the IFIR procedure using
the extended PicSOM system. Suppose one is looking for a lost woman shown
in Figure 4.4a.5 An eyewitness who has seen a likely person is asked to help the
identification task, in which the PicSOM system plays a role in retrieving the

5This example is provided only for the illustrative purpose. All the assumptions here are
virtual and the simulation has nothing to do with the real persons in the displayed images.
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Figure 4.3: The distributions of the Asian class on the bottom level
(64× 64) of the trained TS-SOMs: (a) eigenface, (b) PCA+LDA, and
(c) PDA. The white dots stand for the Asian faces and the black for the
non-Asian. The gray dots represent unoccupied units. (d): Represen-
tative faces on the intermediate level (16× 16) of the TS-SOM trained
by the PDA-extracted features.
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images of the seen person by the eyewitness recalling.

First a questionnaire-like user interface of Figure 4.4b, corresponding to Phase
1a of Figure 4.1 is presented, where the eyewitness checks the aspects she or he
remembers. Here we assume the eyewitness recalls all the other aspects but the
eyeglasses in this example. The PicSOM system then applies filtering by the
deterministic gender:Female ground truth. The mustache and beard classifiers
are redundant for searching a woman. PicSOM thus loads the DSOMs for the
race and hairstyle aspects.

Among the images displayed in the first interactive query round, the eyewitness
ticks the relevant ones for the specified aspects: one for race and four for hairstyle
(Figure 4.4c). The relevance feedback is fed to the PicSOM ranking algorithm
which then outputs the most probable unseen images in the second round (Figure
4.4d). From the retrieved images, the eyewitness recognizes that the second
rightmost one in the last row depicts the correct woman and the first phase
finishes.

If the user wants to continue the search for more images of the same woman, the
retrieval proceeds to Phase 2 of Figure 4.1, where the relevance criterion is set
to the subject aspect. One can see that all the other three images of the same
woman can then be found in the first round of the second phase.

4.6 Quantitative simulation study

A substantial number of queries from human users would be required to evaluate
the performance of an IFIR system in a realistic retrieval setting. Therefore, it
is desirable to quantify the performance in offline simulations in a standardized
and non-subjective benchmark.

The evaluation of an ICBIR system should involve human users. However, a small
number of samples may induce great bias due to subjective difference in assessing
similarity among images. Automated evaluation has therefore been employed in
this work to avoid such subjectivity. In each retrieval round, 20 images were
“displayed”— supplied to the virtual user, a computer program, which assesses
the image similarity by using associated ground truth metadata. We repeated
the retrieval for each of the 433 testing subjects ten times with different random
selections of initial images in the first round.

We compared the following six approaches of IFIR based on the PicSOM frame-
work:
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Figure 4.4: A query example using the PicSOM IFIR system: (a) the
target person in search; (b) the user interface for specifying the aspects
of partial relevance; the displayed images in the first IFIR phase, in
(c) the first round and (d) the second round; (e) the images displayed
in the first round of the second IFIR phase, where the other images
depicting the same subject appears as the fourth to sixth in the first
row.
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(1) Simulated FACERET [103] that uses eigenfaces for normal SOM training;

(2) Fisherface that uses Fisherfaces for normal SOM training;

(3) filter+predict is the same as (2) except that it filters images by the gender
ground truth and by SVM-predictions of mustache, beard, eyeglasses, and
race aspects before iterative retrieval;

(4) filter+predict+race that applies the same filtering as (3) for mustache, beard,
eyeglasses, but implements partial relevance of race through a DSOM cre-
ated by PCA+LDA.

(5) filter+predict+race+hairstyle that is same as (4) except the inclusion of the
partial relevance of hairstyle through a DSOM created by PCA+LDA.

(6) PDA which is same as (5) except that the two DSOMs have been trained
with Parzen Discriminant Analysis.

The first three approaches are unable to make use of the available aspect-wise
partial relevance feedbacks while the fourth to the sixth genuinely employ the
two-phase iterative retrieval principle. The DSOMs created by using Fisherfaces
are loaded in the second phase for the approaches (2)–(5), while the PDA method
(6) employs the Parzenface method which replaces PCA+LDA with PDA.

Two performance measures described in Section 2.4 have been used: the FRHA
statistic addresses the efficiency in the first retrieval phase, while the second
compares the conventional precision/recall ratios in both phases.

4.6.1 First Subject Hit Advantage

The automated evaluation loops over all subjects, each of which serves as the
ultimate relevant class. Thus we rename the FRHA measurement as First Subject
Hit Advantage (FSHA) in this chapter for clarity. Accordingly, denote %t the
FSHA of of the t-th subject class.

We found that the density of FSHA is asymmetric and heavy-tailed. The arith-
metic mean of FSHAs is dominated by large %’s in the tail and thus has high
variability. Alternatively, we have found the distribution of log-FSHAs is roughly
symmetric around its mean, which motivates us to compare the retrieval results
through the means of log-FSHAs instead of the original FSHAs. Furthermore,
the arithmetic mean of log-FSHAs can be connected to FSHAs’ geometric mean
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by an exponential function:(
K∏
t=1

%t

)1/K

= exp

(
1
K

K∑
t=1

log %t

)
, (4.1)

where K is the number of subjects, i.e. K = 433, in our testing data set. Fig-
ure 4.5 shows the error bars of the resulting log-FSHAs and the corresponding
geometric means with the six studied ICBIR methods. The middle point of each
error bar represents the mean of 10 · 433 = 4330 experiments and the extremes
indicate the range of one standard deviation.

The method (2) that replaces eigenfaces by Fisherfaces cannot accelerate, but
even hinders the early occurrence of the first subject hit. An expected rise is
achieved by the method (3) which incorporates the gender ground truth. How-
ever, the overall speedup is still mediocre due to the SVM classification errors of
the other involved aspects. From the method (4) on, we implement the race par-
tial relevance by the DSOM technique, which leads to another significant increase
of performance. A still higher mean of FSHAs can be achieved by including the
hairstyle partial relevance in the method (5). Finally, a further improvement is
obtained by replacing all PCA+LDA with PDA features in method (6).

The best mean FSHA we obtained is 5.46, the meaning of which can be inter-
preted by a simple calculation. We used 1, 210 FERET images for testing, and
recall that there are 2.78 images per subject. Inserting these numbers into the
FSHA definition (2.7), we can deduce that the corresponding first subject hit is
expected to take place at index

i =
1210− 2.78

(2.78 + 1) · 5.46
= 58.5. (4.2)

That is, one can on average retrieve the first image of the target subject within
three rounds if 20 images per round are displayed.

The above analysis shows that our approach outperforms two other IFIR ap-
proaches [135, 25] in the average case. The compared two systems were also
experimented with the FERET face database. In [25], the smallest number of
displayed images until the first subject image appears is 104 if four images are
presented to the user at each iteration. The experimented image set used in [135]
contains only 432 images of 72 subjects, which is only about 1/3 of our test set.
However, the average rank of the first target image is no less than one fifth of
the size of the database, i.e. about 90. It should be noticed that both [135] and
[25] employ supervised feature extraction of facial images, but how the training
set and testing sets have been divided in their experiments remains unclear.
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Figure 4.5: Top: Error bars of log-FSHA. Bottom: geometric means of
FSHAs. The methods used are (1) FACERET, (2) Fisherface, (3) fil-
ter+predict, (4) filter+predict+race, (5) filter+predict+race+hairstyle,
(6) PDA.
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4.6.2 Precision versus recall

We have also recorded the recall and precision performance statistics after each
round of 20 “displayed” images. The overall performance statistics were obtained
by averaging those from the 433 individual testing subjects. We repeated the
experiments ten times with different random seeds and recorded the average
results.

The plots of precision vs. recall are shown in Figure 4.6. For clarity the curves
have been divided in two groups. The first group includes the results of the
two methods, FACERET and Fisherface, without partial relevance. The use of
Fisherfaces instead of eigenfaces results in a slight improvement in the middle
recall levels, but the overall precisions remain very low with the maximum less
than 0.01.

By contrast, we can see in the second group that the precisions obtained by
using partial relevance are much higher than the baseline FACERET method at
all recall levels. Starting from a low precision level due to the random initial set,
the curves rise clearly and the precision maxima occur between the recall values
0.2 and 0.4, which reveals that the learning from the relevance feedback is taking
effect. The mutual ordering of the curves also verifies the results in Figure 4.5
with different kinds of partial relevance.

Because hard classification may prevent the appearance of some true positive
images, the performance by using the filter+predict method (3) is mediocre, es-
pecially in the high recall levels. This disadvantage can be overcome by replac-
ing the SVM classifiers of race and hairstyle with DSOM-based fuzzy retrieval.
Further improvement can be obtained by employing PDA, a more advanced dis-
criminant analysis. PDA significantly outperforms PCA+LDA especially in the
high recall levels which correspond to the second retrieval phase.
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Figure 4.6: Precision vs. recall curves by using the six compared meth-
ods.
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Chapter 5

Conclusions

Content-based image retrieval is a method to overcome the labor and subjectivity
in manual image annotation and to implement image searching by using auto-
matically extracted visual features. Relevance feedback has later been introduced
to implement interactive content-based image retrieval systems and to reduce the
semantic gap between high-level semantic concepts and the low-level visual fea-
tures. With Tree-Structured Self-Organizing Maps, the PicSOM ICBIR system
is able to index large-scale image databases. In addition, relevance feedback can
be accomplished efficiently in a local manner.

Conventional relevance feedback approaches require a vast amount of user inter-
action data, especially when the size of the target class is extremely small. This
often leads to the evaluation fatigue problem. To solve this, an ICBIR system
should allow the user to supply partial knowledge of aspects, such as gender or
hairstyle of the searched person, which probably divide the whole collection into
several semantic classes. The search target can then be characterized by only one
or an intersection of some such semantic classes. This provides multiple levels
of relevance, which is beneficial as aspect-wise partial relevance in early retrieval
phases is helpful for gradually reducing the number of displayed images. In this
way, partial relevance implements from-coarse-to-fine retrieval and it is probably
consistent with human searching behavior.

Partial relevance can be implemented by using the state-of-the-art computer vi-
sion techniques and by utilizing supervised information available in the image
collection. In this work, the PicSOM retrieval system has been extended in
early phases by replacing the membership of a target class with that of a se-
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mantic class as the new relevance criterion until the first relevant hit appears.
Supervised learning has been applied so that the resulting SOMs have stronger
discriminative power. Such an implementation guarantees that the retrieval is
theoretically sound and facilitates interpretation.

A straightforward method to obtain discriminative Self-Organizing Maps is to
employ discriminant analysis as a preprocessing step before normal SOM train-
ing. However, direct application of discriminant analysis on high-dimensional
image data yields poor results. Unsupervised dimensionality reduction is there-
fore required to obtain compact representations of images in a particular domain.
The PCA+LDA method, which is widely used in pattern recognition, has been
applied as the baseline in this work. Beyond the first and second order statistics,
the Informative Discriminant Analysis is adopted to maximize the discrimination
for more complicated distributions. Furthermore, the presented Parzen Discrimi-
nant Analysis regularizes the IDA objective by emphasizing the prior of piecewise
smoothness in images. Both LDA and PDA have been extended in this work for
handling fuzzy cases.

The original IDA optimization algorithm is computationally expensive. Three
acceleration strategies have been presented: First, the computation cost of batch
gradients is reduced by using matrix multiplication. Second, the updates follow a
geodesic flow in the Stiefel manifold without Givens reparameterization. Third,
a more efficient learning direction is calculated by preserving only the principal
whitened components of the batch gradient at each iteration.

In this thesis, an application example, interactive facial image retrieval, has
demonstrated the use of the proposed techniques. Simulations were performed
on a popularly used image database, FERET. In addition to a concrete query
example, the work has included a quantitative study on the obtained advantage
in terms of the occurrence of the first subject hit as well as retrieval precisions
at various recall levels.

The research on ICBIR is still going on. The elements of the presented solution
and analysis can be further improved. People tend to perceive visual patterns
from coarse overview to fine details. On the other hand, discriminative patterns
generally are meaningful only in a specific domain. Therefore, a more advanced
image representation method should utilize both information in multi-resolutions
and statistics of the image domain in analysis.

The image variability is limited at this stage due to the state-of-the-art of cur-
rent computer vision techniques. When more advanced methods are developed,
more difficult data sets, such as the Face Recognition Grand Challenge (FRGC)
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database 1, could be studied. Potential research directions on images without pre-
registration should be investigated. In particular, more representative methods
might be used to generate more invariant features.

For the discriminant analysis, some nonlinear feature extraction techniques may
further improve the performance of resulting DSOMs. Moreover, the ideal super-
vised learning must overcome the problem of small-sized training sets, where some
discriminative patterns, for instance, scars and moles in facial images, are diffi-
cult to be encoded using low-order statistics. In the optimization with Principal
Whitened Gradient, the whitening matrix and the batch gradient are computed
separately. Actually one may achieve a direct and faster method for computing
their product, for example, by adopting online Principal Component Analysis
[131]. Another potential extension of the PWG update rule is to make it accom-
modate additional constraints such as orthonormality or sparseness. Further-
more, many conventional optimization techniques, such as the conjugate gradient,
can be applied in the Euclidean embedding to further improve the convergence
speed.

In addition to discriminative power, the topological ordering of the within-class
clusters also plays an important role for the Discriminative Self-Organizing Map.
Some potential methods, like Discriminative Clustering [54], could discover this
kind of information, by which one would be able to devise a more user-friendly
interface for partial relevance specifications.

This thesis has focused on content-based image retrieval, which, however, does
not prevent the use of other information sources such as text annotations. In-
stead, incorporating such information in a multi-modal retrieval system would
be conducive to designing better user interfaces and to developing more efficient
retrieval.

Interactive content-based image retrieval can be further accelerated with a consid-
erately initialized image set. For example, the IFIR system could be used together
with facial image composition systems. In the presented empirical study, PicSOM
randomly selected the starting images. Actually the retrieval performance could
be improved by using a considerate initial set of images. A potential way to
achieve this is to use the fused result from an image composition system. A
rough output from the composition system would suffice for the subsequent re-
trieval. In this way, the initial set that is comprised of images similar to the
composite could lead to further speedup of the first subject hit.

The automated benchmark study aimed at providing an objective comparison

1http://www.bee-biometrics.org/
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among various IFIR implementations. However, no retrieval procedure that in-
volves the human factor can by any means be deterministic. Rigorous test set-
tings might in some cases cause an evaluation bias from the true performance
of an IFIR system. For example, DSOMs have been proposed for the fuzzy as-
pects like hairstyle, but the current version of PicSOM analysis supports only
boolean-valued relevance for a set of enumerated choices. Consequently the IFIR
performance by using the hairstyle partial relevance could be underestimated.
More studies are therefore needed to investigate the actual stochastic user be-
havior in IFIR systems.
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