35,664 research outputs found

    Lecture notes on ridge regression

    Full text link
    The linear regression model cannot be fitted to high-dimensional data, as the high-dimensionality brings about empirical non-identifiability. Penalized regression overcomes this non-identifiability by augmentation of the loss function by a penalty (i.e. a function of regression coefficients). The ridge penalty is the sum of squared regression coefficients, giving rise to ridge regression. Here many aspect of ridge regression are reviewed e.g. moments, mean squared error, its equivalence to constrained estimation, and its relation to Bayesian regression. Finally, its behaviour and use are illustrated in simulation and on omics data. Subsequently, ridge regression is generalized to allow for a more general penalty. The ridge penalization framework is then translated to logistic regression and its properties are shown to carry over. To contrast ridge penalized estimation, the final chapter introduces its lasso counterpart

    Reliable inference for complex models by discriminative composite likelihood estimation

    Full text link
    Composite likelihood estimation has an important role in the analysis of multivariate data for which the full likelihood function is intractable. An important issue in composite likelihood inference is the choice of the weights associated with lower-dimensional data sub-sets, since the presence of incompatible sub-models can deteriorate the accuracy of the resulting estimator. In this paper, we introduce a new approach for simultaneous parameter estimation by tilting, or re-weighting, each sub-likelihood component called discriminative composite likelihood estimation (D-McLE). The data-adaptive weights maximize the composite likelihood function, subject to moving a given distance from uniform weights; then, the resulting weights can be used to rank lower-dimensional likelihoods in terms of their influence in the composite likelihood function. Our analytical findings and numerical examples support the stability of the resulting estimator compared to estimators constructed using standard composition strategies based on uniform weights. The properties of the new method are illustrated through simulated data and real spatial data on multivariate precipitation extremes.Comment: 29 pages, 4 figure

    The Minimum S-Divergence Estimator under Continuous Models: The Basu-Lindsay Approach

    Full text link
    Robust inference based on the minimization of statistical divergences has proved to be a useful alternative to the classical maximum likelihood based techniques. Recently Ghosh et al. (2013) proposed a general class of divergence measures for robust statistical inference, named the S-Divergence Family. Ghosh (2014) discussed its asymptotic properties for the discrete model of densities. In the present paper, we develop the asymptotic properties of the proposed minimum S-Divergence estimators under continuous models. Here we use the Basu-Lindsay approach (1994) of smoothing the model densities that, unlike previous approaches, avoids much of the complications of the kernel bandwidth selection. Illustrations are presented to support the performance of the resulting estimators both in terms of efficiency and robustness through extensive simulation studies and real data examples.Comment: Pre-Print, 34 page
    • …
    corecore