14,693 research outputs found

    A Novel Distributed Representation of News (DRNews) for Stock Market Predictions

    Full text link
    In this study, a novel Distributed Representation of News (DRNews) model is developed and applied in deep learning-based stock market predictions. With the merit of integrating contextual information and cross-documental knowledge, the DRNews model creates news vectors that describe both the semantic information and potential linkages among news events through an attributed news network. Two stock market prediction tasks, namely the short-term stock movement prediction and stock crises early warning, are implemented in the framework of the attention-based Long Short Term-Memory (LSTM) network. It is suggested that DRNews substantially enhances the results of both tasks comparing with five baselines of news embedding models. Further, the attention mechanism suggests that short-term stock trend and stock market crises both receive influences from daily news with the former demonstrates more critical responses on the information related to the stock market {\em per se}, whilst the latter draws more concerns on the banking sector and economic policies.Comment: 25 page

    Neural Cross-Lingual Entity Linking

    Full text link
    A major challenge in Entity Linking (EL) is making effective use of contextual information to disambiguate mentions to Wikipedia that might refer to different entities in different contexts. The problem exacerbates with cross-lingual EL which involves linking mentions written in non-English documents to entries in the English Wikipedia: to compare textual clues across languages we need to compute similarity between textual fragments across languages. In this paper, we propose a neural EL model that trains fine-grained similarities and dissimilarities between the query and candidate document from multiple perspectives, combined with convolution and tensor networks. Further, we show that this English-trained system can be applied, in zero-shot learning, to other languages by making surprisingly effective use of multi-lingual embeddings. The proposed system has strong empirical evidence yielding state-of-the-art results in English as well as cross-lingual: Spanish and Chinese TAC 2015 datasets.Comment: Association for the Advancement of Artificial Intelligence (AAAI), 201

    Learning to Predict Charges for Criminal Cases with Legal Basis

    Full text link
    The charge prediction task is to determine appropriate charges for a given case, which is helpful for legal assistant systems where the user input is fact description. We argue that relevant law articles play an important role in this task, and therefore propose an attention-based neural network method to jointly model the charge prediction task and the relevant article extraction task in a unified framework. The experimental results show that, besides providing legal basis, the relevant articles can also clearly improve the charge prediction results, and our full model can effectively predict appropriate charges for cases with different expression styles.Comment: 10 pages, accepted by EMNLP 201

    Topic-Specific Sentiment Analysis Can Help Identify Political Ideology

    Get PDF
    Ideological leanings of an individual can often be gauged by the sentiment one expresses about different issues. We propose a simple framework that represents a political ideology as a distribution of sentiment polarities towards a set of topics. This representation can then be used to detect ideological leanings of documents (speeches, news articles, etc.) based on the sentiments expressed towards different topics. Experiments performed using a widely used dataset show the promise of our proposed approach that achieves comparable performance to other methods despite being much simpler and more interpretable.Comment: Presented at EMNLP Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis, 201

    Hierarchical Exploration for Accelerating Contextual Bandits

    Get PDF
    Contextual bandit learning is an increasingly popular approach to optimizing recommender systems via user feedback, but can be slow to converge in practice due to the need for exploring a large feature space. In this paper, we propose a coarse-to-fine hierarchical approach for encoding prior knowledge that drastically reduces the amount of exploration required. Intuitively, user preferences can be reasonably embedded in a coarse low-dimensional feature space that can be explored efficiently, requiring exploration in the high-dimensional space only as necessary. We introduce a bandit algorithm that explores within this coarse-to-fine spectrum, and prove performance guarantees that depend on how well the coarse space captures the user's preferences. We demonstrate substantial improvement over conventional bandit algorithms through extensive simulation as well as a live user study in the setting of personalized news recommendation.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012
    • …
    corecore