35,458 research outputs found

    Regression Discontinuity Designs Using Covariates

    Full text link
    We study regression discontinuity designs when covariates are included in the estimation. We examine local polynomial estimators that include discrete or continuous covariates in an additive separable way, but without imposing any parametric restrictions on the underlying population regression functions. We recommend a covariate-adjustment approach that retains consistency under intuitive conditions, and characterize the potential for estimation and inference improvements. We also present new covariate-adjusted mean squared error expansions and robust bias-corrected inference procedures, with heteroskedasticity-consistent and cluster-robust standard errors. An empirical illustration and an extensive simulation study is presented. All methods are implemented in \texttt{R} and \texttt{Stata} software packages

    A Statistical Perspective on Algorithmic Leveraging

    Full text link
    One popular method for dealing with large-scale data sets is sampling. For example, by using the empirical statistical leverage scores as an importance sampling distribution, the method of algorithmic leveraging samples and rescales rows/columns of data matrices to reduce the data size before performing computations on the subproblem. This method has been successful in improving computational efficiency of algorithms for matrix problems such as least-squares approximation, least absolute deviations approximation, and low-rank matrix approximation. Existing work has focused on algorithmic issues such as worst-case running times and numerical issues associated with providing high-quality implementations, but none of it addresses statistical aspects of this method. In this paper, we provide a simple yet effective framework to evaluate the statistical properties of algorithmic leveraging in the context of estimating parameters in a linear regression model with a fixed number of predictors. We show that from the statistical perspective of bias and variance, neither leverage-based sampling nor uniform sampling dominates the other. This result is particularly striking, given the well-known result that, from the algorithmic perspective of worst-case analysis, leverage-based sampling provides uniformly superior worst-case algorithmic results, when compared with uniform sampling. Based on these theoretical results, we propose and analyze two new leveraging algorithms. A detailed empirical evaluation of existing leverage-based methods as well as these two new methods is carried out on both synthetic and real data sets. The empirical results indicate that our theory is a good predictor of practical performance of existing and new leverage-based algorithms and that the new algorithms achieve improved performance.Comment: 44 pages, 17 figure

    Estimating parameters of fluctuations in the cosmic microwave background

    Get PDF
    We address questions that arise in statistical analyses of recently detected fluctuations in the Cosmic Microwave Background (CMB). Estimators of the quadrupole amplitude, Q, and spectral index, n, of the CMB angular fluctuation power spectrum are considered. Families of unbiased estimators of Q2 and existence conditions for minimum variance estimators of n are given. We find that the common practice of excluding the quadrupole is not recommended if one is interested in unbiased estimators. We explain previousiy reported correlations of the estimators and show how they depend on the multiple used to normalize the spectrum. We show that a finite beam resolution does not justify the use of truncated least-squares to estimate harmonic coefficients of CMB data
    corecore