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Abstract _ 

We address questions that arise in statistical analyses of recently detected fluctuations in the 

Cosmic Microwave Background (CMB). Estimators ofthe quadrupole amplitude, Q, and spectral 

index, n, of the CMB angular fluctuation power spectrum are considered. Families of unbiased 

estimators of Q2 and existence conditions for minimum variance estimators of n are given. We 

find that the common practice of excluding the quadrupole is not recommended if one is interested 

in unbiased estimators. We explain previousiy reported correlations of the estimators and show 

how they depend on the multiple used to normalize the spectrum. We show that a finite beam 

resolution does not justify the use of truncated least-squares to estimate harmonic coefficients of 

CMB data. 
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1. Introduction 

Thirty years ago the Cosmic Microwave Background (CMB) radiation was discovered 

by Penzias and Wilson (1965). This nearly isotropic, 2.7 K blackbody radiation is the 

redshifted relic of the Big Bang, and is comprised of the oldest observable photons. Their 

long journey towards us has lasted 99.997% of the age of the universej a journey that 

began when the photons were last scattered by free electrons of the cosmic plasma, at a 

time when the universe was 1000 times smaller and the temperature 1000 times higher 

than the CMB today. Observed large scale structures like galaxies, c1usters of galaxies, 

giant voids and superc1usters are believed to be the result of gravitational instabilities of 

under- and over-densities in the matter distribution. If that is the case their imprint must 

be present in the form of anisotropies in the temperature distribution of the CMB. For 25 

years, astrophysicists had been looking for these anisotropies, which are crucial ingredients 

in present theories of large scale structure formation. In 1989, NASA launched its first 

cosmology satellite, COBE. The Differential Microwave Radiometer (DMR) instrument 

on board COBE was constructed to search for these anisotropies. In the spring of 1992, 

the COBE DMR team announced the discovery of anisotropies in the CMB (Smoot et 

al. 1992), starting a new era in cosmology. 

Since our observable universe is a single finite sample of a larger universe, models 

of large-scale structure can only make statistical predictions about the observable CMB 

fiuctuations. This statistical uncertainty in the predictions is usually known as cosmic 

variance. For example, a popular c1ass of models predicts Gaussian distributed spherical 

harmonic coefficients of the fiuctuations. More precisely, CMB fiuctuations in a given 

direction in the sky are written in terms of real spherical harmonics as (Smoot et al. 1991) 

~T jT((), f/J) = ¿ almFlm ((), f/J), (1) 
I,m 

where the coefficients alm are modeled as idependent N(O, an variables, with al being a 

function of two parameters; the spectral index n of the power spectrum of the matter 

density fiuctuations, and its amplitude Q. Usually Q is written as Qrms-PS to emphasize 

that it is the rms amplitude of the quadrupole (l = 2) normalized power spectrum. If 
n can be determined to be greater than one, then sorne favorite theories (e.g. sorne 

infiationary models) will have to be abandoned or modified. On the other hand, if n 

is found to be less than one, then the contribution of gravitational waves towards the 

production of fiuctuations could be significant. There have been a number of studies 

---------------------------,.-----------------------------­
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to estimate the speetral parameters that best fit the data. Figure 1 is a summary of 

published n and Q estimates from COBE DMR data. Many of the estimated values of Q 
in Fig. 1 have been obtained by simply fixing n = 1. Also, the best fitting quadrupole 

is sometimes removed from the data before any estimation is done (e.g. Lineweaver et 

al. 1994, Smoot et al. 1994, Wright et al. 1994). This quadrupole exc1usion is motivated 

by the possibility of galactic contamination and systematic error contributions to the 

measured quadrupole. Exc1usion of the quadrupole results in values of n that are c10ser 

to the favorite infiationary value n = 1. When the quadrupole is inc1uded, larger n values 

are obtained as the observed quadrupole appears significantiy lower than that predicted 

by fiuetuation amplitudes at higher orders; only the five points to the right in Fig. 1 

inc1ude the quadrupole. The curves in Fig. 1 are fits to scatter plots of Monte-Carlo 

estimates of the spectral parameters. This correlation of the estimators makes it difficult 

to estimate n and Q with Monte-Carlo methods. 

This work was motivated by questions arising in the analysis of DMR data: Do there 

exist unbiased estimators of Q2 besides the observed total power at 1= 2? Do minimum 

variance unbiased estimators of n and Q exist? How good are maximum likelihood (ML) 

methods for the CMB problem, consisting of non-identically distributed observations? 

How are estimates affeeted by the exc1usion of the quadrupole? Why are reported esti­

mators always correlated? Are least-squares estimates of harmonic coefficients affected 

by the order of the fit? To answer these questions we consider estimators that can be 

expressed as functions of finitely many spherical harmonic coefficients. For example, 

Q2 can be estimated using the total power, ¿: a~m' at 1= 2 or using ML of the alm (e.g. 

Gorski et al. 1994). These estimators also arise naturally when Monte-Carlo methods are 

used: given a map of temperatures TI, ... , Tk, a statistic S(T1, ... , Tk) is defined (Banday 

et al. 1994, Kogut et al. 1995, Smoot et al. 1994). Then its mean fls(n, Q) and variance­

covariance ~s(n, Q) are determined through sky map simulations for different n and Q 
incorporating actual noise levels, observation patterns, known systematics and pixeliza­

tion. Next, a criterion is defined for choosing the best n and Q by comparing the measured 

S to the one obtained from simulations. Usually estimators n and Qare defined as those 

values that minimize or maximize a test statistic (e.g. X2 
), which is formed using the 

simulated fls and ~s, and the statistic S of the real data. However, the statistic S of the 

observed data depends in principIe on infinite1y many alm while /-ls and ~s are computed 

using only those of order 1~ L. We may assume that the estimators are functions of alm , 

1~ L, provided they are insensitive to this order truncation. 
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Among those statistics given in terms of finitely many alm , unbiased and ML esti­

mators are considered. The alm will be assumed to be noiseless, subject only to cosmic 

variance, providing a reference as to the best one might hope to achieve using these esti­

mators. Establishing the existence of uniformly minimum unbiased estimators (UMVU) 

estimators, 01' even of unbiased estimators, for a given maximumorder L is not straightfor­

ward. Sorne existence conditions are given in Seetion 2. On the other hand, ML estimators 

of n and Q2 are relatively easy to compute numerical1y. The use of ML is usual1y justified 

by its nice asymptotic properties. However, one has to be cautious since these proper­

ties are usual1y proved under the assumptions of independent and identical1y distributed 

variables. The alm are not identical1y distributed for different l. Although there are sorne 

results concerning thenon-identical1y distributed case (e.g. Hoadley 1971), we condueted 

Monte-Carlo simulations to study ML estimators of n and Q2 for the values of L fre­

quent1y used, and to check for possible systematic effeets caused by the exclusion of the 

quadrupole. Section 3 presents results of our simulations, as wel1 as a discussion of the 

observed bias, variance, and correlations. 

In the last section we point out sorne difficulties in estimating the alm themselves. 

To estimate harmonic coefficients of our observable universe, cosmic variance is neglected 

and only variance contributions due to the measurement process are considered. Suppose 

we want to estimate the monopole and dipole (1 = 0,1) coefficients. This is usual1y done 

by least-squares fitting the signal to a harmonic expansion of sorne finite order L 2: 1. It 

is sometimes believed that the finite resolution of the beam al10ws one to safely assume a 

finite harmonic expansion of the data, i.e. the alm estimates are not order dependent if Lis 

high enough. Harmonic coefficients of a linear combination of two functions on the sphere 

are linear combinations of the corresponding coefficients of each function, i.e., the alm 

are linear functionals of the temperature. It has been shown that only linear functionals 

which are linear combinations of the data generating process can be recovered with finite 

uncertainty in a linear inverse problem, unless additional constraints are imposed (Backus 

1970). Due to galactic plane cuts, uneven sky sampling and beam resolution, harmonic 

coefficients of DMR data do not have this property. Uncertainties of the alm estimators 

depend on L. This truncation effect has been pointed out before (e.g. Backus 1988, 

Benton et al. 1982, Stark 1993) but a simple toy example is illustrative. The last section 

gives a simple COBE-like example to show how misleading least-squares estimates of the 

alm can be. 

-------"-------------------.,.-----------.,-----------------­
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2. The Model 

Power-law models predict a linear power spectrum of the CMB fiuctuations for the 

angular scales probed by the DMR instrument ( ~ 7°). Such a spectrum is usual1y 

parametrized by an amplitude Q and a spectral index n. Assume that harmonic co­

efficients alm in the expansion (1) are noiseless, subject only to cosmic variance. Then the 

alm are modeled as independent N(O, (1) variables, with cosmic variance O[ given by 

2=Q2N() N()= 1f(1+(n-1)/2)f((9-n)/2) 
(2)

al In, 1 n 5f(1+(5-n)/2)r((3+n)/2)' 

for 1> 1, Q > O. The functions NI have a singularity at n = -3 and are only physical1y 

meaningful for n < 3 (Efstathiou 1990, Lineweaver 1994). We therefore consider the 

range -3 < n < 3 as a natural parameter space for n, but the more restricted interval 

-1 :$ n :$ 2 is physical1y reasonable in that it spans al1 the experimental1y determined 

values of n. 

The joint distribution of the alm for 1 :$ L can be written as 

1 1 (21+1)PI
f(a2,-2l ... ,aL,L) ex: ~exp[--2L Q2N( ) ], (3) , ni QVNi(n) I In 

where 
1 I 

PI = 21 + 1 L a~m rv 

m=-I 

It fol1ows that the spectrum, P = (P2, ... , PL), is sufficient for Q and n. 

3. U nbiased Estimation 

Consider unbiased estimators of the spectral parameters that are functions of the 

observed alm (1 :$ L). Since P is sufficient, unbiased estimators of n and Q2 may be 

assumed to be functions of P. We will require that estimators nand ¿;P behave properly 

under re-scalings, i.e., multiplying al1 the alm by a constant e should scale the estimated 

Q2 with a c2 while the estimated n should remain unchanged. This means that for any 

k>O 
(4) 

Since N2(n) = 1/5, we have that Q~ = 5P2 is an unbiased estimator of Q2. But 

Q~ has a large variance and it is rarely used to estimate Q2. However, we know of no 
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other unbiased estimator of Q2 previously reported. It is natural to ask whether 06 is 

the only one. Take the simple case L = 3, Le., P = (P2 , P3 ). By completeness, 06 is the 

only unbiased estimator of Q2 and therefore it is also UMVU. A larger number of alm 

could be used by choosing P2 and any other PI instead, but 06 will still be the unique 

UMVU estimator of Q2. It is shown in the Appendix (Pf.1) that these are the only cases 

for which 06 is an UMVU estimator. Any unbiased estimators of Q2 can be written as 

Q2 = Q~ _ U(P), for sorne unbiased estimator of zero U(P). That there do exist families 

of unbiased estimators of zero for L > 3 is shown in the Appendix (Pf.1). We thus have 

infinitely many unbiased estimators of Q2 when L > 3. The question is whether there 

exists one with uniformly minimum variance. So far we are only able to answer that 

06 is not UMVU if L > 3 (Appendix Pf.1). In fact, no PI is an UMVU estimator of its 

expectation. But, the question of whether there exist UMVU estimators of Q2 for L > 3 

is still unsolved. 

Whether an unbiased estimator of the spectral index n exists is still unknown. But, 

given L, we ask how many of the 11 (1 :S L) are required to form an UMVU estimator. 

Such an estimator of n, if there is one, can not be independent of two consecutive PI, PI+1 

(Appendix Pf.2). Therefore, if an UMVU estimator of n exists for 1 :S L, it will not be 

UMVU if L is increased to L +2. It is also clear that such an estimator of n will depend 

on at least half of the PI, 1 :S L. 

As mentioned in the Introduction, the quadrupole is sometimes removed from the 

data before estimating n and Q. How are unbiased estimatators of the spectral parameters 

affected by the exclusion of P2? Heuristical1y, as n -+ -3 the expected amplitudes of each 

of the PI goes to zero, except that of P2 • Thus, if P2 is not included we are only left 

with the vanishing PI' Not surprisingly, there does not exist an unbiased estimator of 

Q2 for the parameter space Q > 0, -3 < n < 3 (Appendix Pf.3). However, it is still not 

clear whether unbiased estimators of Q2 exist for subintervals of -3 < n < 3 when P2 is 

excluded. 

4. Maximum Likelihood Estimation 

Solving the maximum likelihood equations leads to estimators nmI and Q~l that are 

functions of the sufficient statistic P and that satisfy the scaling conditions (4). For 

-- ----~-.----------------r_---------------------------
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example, when L = 3 the ML estimators are 

A A2 9P3 - 3P2 
Qmi = 5P2 , nml = P +P • 

3 2 

In this case, Q~ is the unbiased estimator considered in Section 3, but nml is biased: 

a short analytical calculation shows that E(nml) = 0.489 and 1.409 for n = O and 1, 

respectively. It is also easy to see that nml and Q~I are negatively correlated, in faet, 

Figure 2 shows a scatter plot of nml and Q~I for simulated p¡ with input values no = 1, 

Qo = 1. The solid curve is the conditional expeetation of Q~I given nml . The curves in 

Fig. 1 are basical1y estimates of the corresponding conditional expectation. 

4.1. Simulation Results and Discussion 

We study ML estimators for higher values of L through Monte-Carlo simulations. 

The ML estimator of n is determined by finding the zero of 8nlog(L[n, Q]), where L[n, Q] 

is the likelihood obtained from Eqn.(3). We use a combination of the Newton-Raphson 

and biseetion methods to determine the zero to an accuracy of five decimal places. Once 

nml is found, the ML estimator of Q2 is determined by substitution into the Q-derivative of 

the log-likelihood equation. Since the estimators satisfy the scaling conditions, it suffices 

to consider the case Q = 1. Due to the resolution of the DMR beam, Monte-Carlo 

simulations of DMR data are usual1y performed using harmonic expansions to L rv 30. 

The fits in the simulations here are for L = 20 and L = 30. 

Figures 3a-d show estimated biases of nml and Qml as funetions of n. Both estimators 

show a positive bias. The n dependence of the bias of Q seems to be large while the n 

bias is almost n independent. For L = 30 the average biases are about 0.004 and O.OOlQ 

for nml and QmI respectively. Excluding the quadrupole (solid symbols) does not seem to 

affect the bias of nml but increases that of Qml' 

\Ve now compare the variance of the estimators with their Cramer-Rao (CR) bound. 

The information matrix 1 of Q2 and n is 

I(Q2,n) = ( 1 2b4¿¡$L(2l~1) 12b2¿¡$L(2l+1~:nln(N¡~). (5) 
2Q2 ¿1$d2l + l)an ln(N¡) 2 ¿¡$d2l + l)(an ln (N¡)) 

------------------------,----------------------_._--­
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Therefore, the CR bounds for n, Q and Q2 are 

Figures 4a and 4b compare the estimated standard errors of nml and QmI with the square 

root of their CR bound. The plots show that the ML estimators are basically efficient for 

L = 20 and L = 30. The distance from the bound does not seem to be affeeted by the 

exclusion of the quadrupole. We show next that this efficiency is part1y responsible for 

the observed correlation between n and Q. 

4.2. Carrelatian aE the Estimatars 

The estimators nml and Q~l are negatively correlated when L = 3. Simulations show 

that this is also the case for higher values of L. All reported estimators of n and Q have 

also shown this correlation (e.g. curves in Fig. 1), which makes difficult the determination 

of n and Q if a Monte-Carlo method like the one described in the Introduction is used. 

Sorne studies have reported a fit to the curve E(Qln) (see Fig. 1) and sorne others have 

claimed that the correlation is due to instrument noise in the data (Smoot et al. 1994). 

But, as Fig. 1 shows, the corre1ation is present in ML estimators of n and Q2 even for 

noiseless data. The observed correlation is a property of the estimators. Independent 

estimators of the speetral parameters do existo For example, by independence of the 

PI, independent estimators with small bias could be found by choosing a high enough L 

and determining the ML estimator of n using only the odd PI, and the ML estimator 

of Q2 using only the even ones. The CR bound can be used to find a simple sufficient 

condition to explain the observed negative correlation. Consider the CR bound of n _ Q2: 

CR(n - Q2) = (122 +111 +2112 )/det(1), where 1 is the information matrix in Eqn.(5). It 

is easy to see that 112 > Ofor -3 < n < 3. Therefore, 

CR(n - Q2) - CR(n) - CR(Q2) = 2112 /det(1) ~ O. (6) 

Now, take any estimators n and Q2 such that their variances and the variance of n _ Q2 

achieve their corresponding CR bounds. It then follows from Eqn.(6) that 

Therefore cov(n, (2) :::; O, and n and Q2 are negative1y correlated. The same is true if the 

variances are not equal but 'close enough' to their CR bounds. This is precisely the case 

""--"--------------------r---------------------------­
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of the ML estimators found above. In other words, any estimators of the two speetral 

parameters which are based on the same statistic P and which are almost efficient will be 

negatively correlated. A similar argument prediets the sign of the correlation for different 

power speetrum normalizations. Suppose we normalize the spectrum to the kth multipole. 

Take R to be the new normalizing amplitude, and E(P¡) = R2 M¡(n). It can be shown 

(Appendix PfA) that almost efficient estimators of R and n are negatively or positively 

correlated depending on whether onln(Nk) is smaller or larger than the weighted l-average 

of onln(N¡). Kg., it will be negative for small values of k and positive for larger ones. 

One can use Eqn.(6) to find a k that gives a small correlation in order to get a better 

Monte-Carlo estimate of n. 

5. Covariance of Harmonic Coefficients 

COBE measurements of the CMB are convolutions of the DMR instrument's beam 

pattern with a sky signal 6:..T jT. The relationship between the true sky spherical harmonic 

coefficients a¡m of 6:..T jT and those of the convolved sky b¡m is (ignoring pixelization effeets) 

where the G¡ are known Legendre coefficients of the beam pattern. Reported estimates of 

the a¡m are usually G¡-correeted least-squares fits of the b¡m' It is usually believed that the 

expansion of the real signal can be assumed finite due to the exponential decay of the G/. 
However, using only a finite number of harmonics in the least-squares fits effectively adds 

the extra condition of having a finite harmonic expansiono Using least-squares to estimate 

the coefficients leads to estimators that depend on this extra information. For example, 

we fit a dipole to a 2-year 53 GHz COBE sky map using least-squares to different orders 

and galactic cuts. Figure 5 shows the estimated x-component amplitude of the dipole 

in celestial coordinates and its estimated error. With a 50 galaetic cut, the absolute 

value of the x component amplitude decreases with L, while its estimated error increases. 

Due to larger correlations of the harmonics on the further cut sphere, the increase in 

the error is steeper with 100 galactic cut fits. Instabilities in the matrix operations may 

have something to do with the observed effects, especially for larger values of L. A simple 

example in which all the matrix operations can be done by hand may give more convincing 

evidence of a truncation order dependence. 
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5.1. A Toy Example 

Start with a non-orthonormal basis {XI(t)}, O S t S 1 (non-orthogonality of the 

harmonics for DMR data is mainly due to galactic plane cuts and uneven sky sampling) 

where {ei(t)} is any orthonormal basis. Suppose we have measurements y(t) modeled by 

L 00 

y(ti) = :L alGIXI(ti) + :L alGI XI(ti) + E(ti), 
1=1 I=L+1 

where E(t) are iid N(O, (72) and ti = i/J, 1 S í S J, index the different observations. 

Assume that the GI are so smal1 for l > L that only the first L terms are considered in 

the fit. We show that no matter how smal1 the GI may be, truncating the expansion to a 

finite order leads to estimates of al that strongly depend on 1. 

A least-squares fit to tha data using only bases functions up to order L is obtained 

by minimizing Ily - X b 11 2 
, where bl = alGI and Xli = XI (ti) for 1 S l S L and 1 S í S J. 

The least-squares estimator of b is 

Assume that sampling in t is fine and uniform enough to assure that sums of products 

over the J observations are wel1 approximated by the scalar product of the corresponding 

vectors in t-space (e.g. 'L[=1 XI(ti)Xm(ti) = J < XI, Xm > ). The matrix (X t X)-l can then 

be written explicitly 

L L -1 L-2 L-3 1 

L -1 L -1 L-2 L -3 1 

L-2 L-2 L -2 L ­ 3 1 

(X t xt1 = ~ 
J 

1 1 1 1 1 

Notice that the entries of (Xtxt1 grow linearly with L. The estimator b is biased 

-_.-------------------,-----------:------------­
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where 
t

G = IC2:¿a¡G¡ < X1,X¡ >, ... ,¿a¡G¡ < XL,X¡ ». 
¡>L ¡>L 

In particular, 

For example, the bias is small for large L if the a¡ are known to be uniformly bounded, 

i.e., increasing the order decreases the bias. The covariance is not so well behavedj the 

covariance matrices of band aare 

where D = diag{G11
, ... , G"L 1 

}. It is clear that the variance should grow as l/G¡ because 

the G¡ are decaying, making higher order terms weakly determined; and that it should 

decrease as the resolution 1 increases. But, for a fixed 1, the variance and covariance also 

grow linearly with L. For example, since var(a¡) = (L+ 1-1)/(G¡1), the variance ratio of 

al for fits of order 1= L and 1= 1 is just L. This does not mean, however, that it is best to 

do lower order fits. Then we really get artificial uncertainties to an ill determined inverse 

problem. Work to overcome these difficulties with the COBE data is still in progress. 

A possible solution might be to add constraints from prior physical information. For 

example, quadratic bounds have been used for similar problems in geomagnetism (e.g. 

Backus 1989, Stark 1992). 

6. Conclusions 

\Ve have chosen a class of estimators which arises naturally in the type of Monte-Carlo 

methods used in COBE DMR data analyses. Within this class we considered unbiased 

and ML estimators. We found families of unbiased estimators of Q2 but were unable 

to prove the existence of UMVU estimators. No unbiased estimators of n were found 

but existence conditions for UMVU estimators were given. It was shown that excluding 

the quadrupole from the data introduces a bias in estimators of Q2, but does not affect 

the efficiency of ML estimators. We showed that the observed negative corre1ation of 

reported estimates of n and Q is a property of the estimators used; any two almost efficient 

estimators of the spectral parameters that are based on the same sufficient statistic P 

are negative1y corre1ated. In particular, Monte-Carlo estimates of n and Q which are 
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insensitive to truncation order and which are almost efficient will be correlated, depending 

on the multipole to which the power spectrum is normalized. It was also shown that 

despite the finite beam resolution, least-squares fits of harmonic coefficients of DMR data 

should be corrected for an order dependence of the fit. 
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7. Appendix: Proofs 

Pf.!. Start with the suffieient statistic P = (P2 , ... , PL ), L > 3. A recursive relation 

between Ni and Ni+! leads to two familes of unbiased estimators of zero 

Ví(P) = (21 +5)Pi Pi+l - (21 +3)(21 +5)PiPi+2 + (21 + 3)Pi~1 - (21 +5)Pi+1Pl+2, 

Unbiased estimators of zero satisfying the scaling conditions (4) can be obtained easily 

from these. We use the Ví to show that Q6 is not UMVU if L > 3. For an unbiased 

estimator to be UMVU it is necessary and sufficient that it be uncorrelated with any 

unbiased estimator of zero. Since the identity 

can not hold for all n, it follows that Q6 is not UMVU when L > 3. A similar reasoning 

shows that no Pi is an UMVU estimator of its expectation. 

Pf.2. Take a¡m, 1 ~ L, so P = (P2 , ... , PL ). We show that an UMVU estimator of n 

can not be independent of Pi, P¡+l, for sorne 1 ~ L - 1. Suppose n(P) is an unbiased 

estimator oí n that is independent of P¡ and P¡+l' Then 

2 ) 2 21 - 1 +n N ( ) 
E(P¡+l)=Q Ni+l(n =Q 21+5-n In. 

------------------,------------:------------' 
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Since n is an unbiased estimator for any Q and n, we have 

E(Pl+l)E(21 +5 - n) = Q2(21- 1 +n)NI(n) = E(21-1 +n)E(PI). 

But PI and PI+} are independent of n by assumption, so 

E[ (21 +5 - n)PI+1 - (21 - 1 +n)P¡] = 0, 

for aH Q and n. That is, 

u = (21 +5 - n)P1+1 - (21 - 1 +n)PI 

is an unbiased estimator of zero. If in addition n is minimum variance, then it must be 

uncorrelated with any unbiased estimator of zero. In particular we must have < U, n>= 0, 

thus 

This is a contradiction since the last identity is not true for aH n. Therefore n is not an 

UMVU estimator of n. 

Pf.3. Consider the parameter space -3 < n < 3, Q > 0, and assume P2 is excluded 

from the data, i.e. P = (P3 , ... , PL)' \Ve show that no unbiased estimator of Q2 satisfying 

the scaling conditions (4) exists. Take a finite variance unbiased estimator 8(P) of Q2 , 

so that 

(7) 

for any n and Q. If 8(P) satisfies the scaling conditions, then 

P4 PL
8(P) = P3 F( P ' ... , P ), 

3 3 

for sorne funetion F. Also, by the scaling conditions it suffices to consider the case Q = 1. 

Define new variables Yí = P3 , Y2 = P4 / P3 , ••• , YL - 2 = PL / P3 • The joint density of the Yí is 

Calculating the integral with respect to Yí in the expeetation of 8 turns Eqn.(7) into 

(8) 
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where Y' = (12, oo., YL-2), a = (L2+2L- 6)/2, k is some positive constant and 

Ñ¡(n) =� N¡(n) = n +5 ... n + 21 - 3 
N3(n) l1-n 21+3-n' 

, 9 2L + 1 
P(n, Y) = 7 + Ñ (n) Y2 +... + NL(n) YL- 2 , 

4 

7 2L-l 

8(Y') = 1';2" ... YL-~ F(Y'). 

vVe first proof that the integral on the left side of Eqn.(8) is bounded for any n: since the 

variance of 8 is finite for any n, it follows that E(I 8 1) < 00 for all n. Choose no = 1, 

then for any n 

11 8(Y')dY'l <1 18(Y')1 P(no, y,)a dY' (9)P(n, y,)a - P(no, y,)a P(n, y,)a . 

The integral of the first quotient on the right is bounded by assumption. The second 

quotient is a ratio of two positive polynomials of the same degree. It is easy to see that 

this ratio is bounded and therefore the integral on the left side of Eqn.(9) is bounded. 

But, since N3 (n) ex: (3 + n)/(9 - n), the right hand side of Eqn.(8) goes to infinity as 

n -7 -3. A contradiction since the left side is bounded. 

prA. It was shown in Section 5 that the correlation sign of efficient estimators of n 

and Q is determined by the sign of 112 • We use the same argument for different spectrum 

normalizations. Renormalize the power spectrum to the kth multipole so that 

where Mk(n) = 1/(2k + 1) and (2k + l)M¡(n) = N¡(n)/Nk(n). The new information 

matrix 1'(R2,n) is the same as the previous 1(Q2, n) in Section 5, but with R in place of 

Q and M¡ instead of N¡. Writing 1~2 in terms of N¡ leads to 

which can be re-written as 

where N = L,¡~L(21 +1). That is, the term 1~2 is positive when on1n(Nk) is to the left of 

the weighted average -J¡ L,¡~L(21 + 1)on1n(N¡) and negative otherwise. 
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Figure Captions 

Figure 1. Estimates of Power Spectrum Parameters n and Q (also known as Qrms-PS). 

For many of the points Q was found after fixing n = 1. The curves are estimates of 

the conditional expectation of Qgiven n. Only the five points on the lower right were 

calculated with the quadrupole included in the data (Lineweaver 1995). 

Figure 2. Scatter plot of simulated ML estimators of Q2 and n when only P2 and 

P3 are used. The input values were no = 1 and Qo = 1. The dotted curve is the condi­

tional expectation of Q:Ul given nml. 

Figure 3. Bias of the ML estimators for different values of n with Q = 1. Solid symbols 

corresponcl to simulations with the quadrupole excluded. 

Figure 4. Comparing the standard error of nrnl (4a) and Q~ (4b) with the square 

root of their CR bound (curves) as functions of n with Qo = 1. The solid symbols corre­

sponcl to the cases when the quadrupole is excluded. 

Figure 5. Least-squares fits to a 2-year 53 GHz COBE sky map. Estimates of the 

x-component of the dipole in celestial coordinates and standard errors are shown in 5a 

and 5b respectively. The fits were done to orders L = 1,2,4, ... , 12, and regions with 

galactic latitudes Ibl < 5° and 10° were removed to minimize contamination from the 

galactic planeo 
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