83 research outputs found

    Simple, Accurate, and Robust Nonparametric Blind Super-Resolution

    Full text link
    This paper proposes a simple, accurate, and robust approach to single image nonparametric blind Super-Resolution (SR). This task is formulated as a functional to be minimized with respect to both an intermediate super-resolved image and a nonparametric blur-kernel. The proposed approach includes a convolution consistency constraint which uses a non-blind learning-based SR result to better guide the estimation process. Another key component is the unnatural bi-l0-l2-norm regularization imposed on the super-resolved, sharp image and the blur-kernel, which is shown to be quite beneficial for estimating the blur-kernel accurately. The numerical optimization is implemented by coupling the splitting augmented Lagrangian and the conjugate gradient (CG). Using the pre-estimated blur-kernel, we finally reconstruct the SR image by a very simple non-blind SR method that uses a natural image prior. The proposed approach is demonstrated to achieve better performance than the recent method by Michaeli and Irani [2] in both terms of the kernel estimation accuracy and image SR quality

    Text Image Deblurring Using Kernel Sparsity Prior

    Get PDF
    Previous methods on text image motion deblurring seldom consider the sparse characteristics of the blur kernel. This paper proposes a new text image motion deblurring method by exploiting the sparse properties of both text image itself and kernel. It incorporates the L₀-norm for regularizing the blur kernel in the deblurring model, besides the L₀ sparse priors for the text image and its gradient. Such a L₀-norm-based model is efficiently optimized by half-quadratic splitting coupled with the fast conjugate descent method. To further improve the quality of the recovered kernel, a structure-preserving kernel denoising method is also developed to filter out the noisy pixels, yielding a clean kernel curve. Experimental results show the superiority of the proposed method. The source code and results are available at: https://github.com/shenjianbing/text-image-deblur

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    Fast and easy blind deblurring using an inverse filter and PROBE

    Full text link
    PROBE (Progressive Removal of Blur Residual) is a recursive framework for blind deblurring. Using the elementary modified inverse filter at its core, PROBE's experimental performance meets or exceeds the state of the art, both visually and quantitatively. Remarkably, PROBE lends itself to analysis that reveals its convergence properties. PROBE is motivated by recent ideas on progressive blind deblurring, but breaks away from previous research by its simplicity, speed, performance and potential for analysis. PROBE is neither a functional minimization approach, nor an open-loop sequential method (blur kernel estimation followed by non-blind deblurring). PROBE is a feedback scheme, deriving its unique strength from the closed-loop architecture rather than from the accuracy of its algorithmic components

    VDIP-TGV: Blind Image Deconvolution via Variational Deep Image Prior Empowered by Total Generalized Variation

    Full text link
    Recovering clear images from blurry ones with an unknown blur kernel is a challenging problem. Deep image prior (DIP) proposes to use the deep network as a regularizer for a single image rather than as a supervised model, which achieves encouraging results in the nonblind deblurring problem. However, since the relationship between images and the network architectures is unclear, it is hard to find a suitable architecture to provide sufficient constraints on the estimated blur kernels and clean images. Also, DIP uses the sparse maximum a posteriori (MAP), which is insufficient to enforce the selection of the recovery image. Recently, variational deep image prior (VDIP) was proposed to impose constraints on both blur kernels and recovery images and take the standard deviation of the image into account during the optimization process by the variational principle. However, we empirically find that VDIP struggles with processing image details and tends to generate suboptimal results when the blur kernel is large. Therefore, we combine total generalized variational (TGV) regularization with VDIP in this paper to overcome these shortcomings of VDIP. TGV is a flexible regularization that utilizes the characteristics of partial derivatives of varying orders to regularize images at different scales, reducing oil painting artifacts while maintaining sharp edges. The proposed VDIP-TGV effectively recovers image edges and details by supplementing extra gradient information through TGV. Additionally, this model is solved by the alternating direction method of multipliers (ADMM), which effectively combines traditional algorithms and deep learning methods. Experiments show that our proposed VDIP-TGV surpasses various state-of-the-art models quantitatively and qualitatively.Comment: 13 pages, 5 figure

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented
    corecore