8,286 research outputs found

    Distributed Model Predictive Consensus via the Alternating Direction Method of Multipliers

    Full text link
    We propose a distributed optimization method for solving a distributed model predictive consensus problem. The goal is to design a distributed controller for a network of dynamical systems to optimize a coupled objective function while respecting state and input constraints. The distributed optimization method is an augmented Lagrangian method called the Alternating Direction Method of Multipliers (ADMM), which was introduced in the 1970s but has seen a recent resurgence in the context of dramatic increases in computing power and the development of widely available distributed computing platforms. The method is applied to position and velocity consensus in a network of double integrators. We find that a few tens of ADMM iterations yield closed-loop performance near what is achieved by solving the optimization problem centrally. Furthermore, the use of recent code generation techniques for solving local subproblems yields fast overall computation times.Comment: 7 pages, 5 figures, 50th Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 201

    Fast ADMM Algorithm for Distributed Optimization with Adaptive Penalty

    Full text link
    We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the method that adaptively determines the maximum number of iterations to update the penalty. We show that this approach effectively leads to an adaptive, dynamic network topology underlying the distributed optimization. The utility of the new penalty update schemes is demonstrated on both synthetic and real data, including a computer vision application of distributed structure from motion.Comment: 8 pages manuscript, 2 pages appendix, 5 figure

    A General Analysis of the Convergence of ADMM

    Full text link
    We provide a new proof of the linear convergence of the alternating direction method of multipliers (ADMM) when one of the objective terms is strongly convex. Our proof is based on a framework for analyzing optimization algorithms introduced in Lessard et al. (2014), reducing algorithm convergence to verifying the stability of a dynamical system. This approach generalizes a number of existing results and obviates any assumptions about specific choices of algorithm parameters. On a numerical example, we demonstrate that minimizing the derived bound on the convergence rate provides a practical approach to selecting algorithm parameters for particular ADMM instances. We complement our upper bound by constructing a nearly-matching lower bound on the worst-case rate of convergence.Comment: 10 pages, 6 figure

    Alternating direction method of multipliers for penalized zero-variance discriminant analysis

    Get PDF
    We consider the task of classification in the high dimensional setting where the number of features of the given data is significantly greater than the number of observations. To accomplish this task, we propose a heuristic, called sparse zero-variance discriminant analysis (SZVD), for simultaneously performing linear discriminant analysis and feature selection on high dimensional data. This method combines classical zero-variance discriminant analysis, where discriminant vectors are identified in the null space of the sample within-class covariance matrix, with penalization applied to induce sparse structures in the resulting vectors. To approximately solve the resulting nonconvex problem, we develop a simple algorithm based on the alternating direction method of multipliers. Further, we show that this algorithm is applicable to a larger class of penalized generalized eigenvalue problems, including a particular relaxation of the sparse principal component analysis problem. Finally, we establish theoretical guarantees for convergence of our algorithm to stationary points of the original nonconvex problem, and empirically demonstrate the effectiveness of our heuristic for classifying simulated data and data drawn from applications in time-series classification
    • …
    corecore