12,638 research outputs found

    Cross Language Text Classification via Subspace Co-Regularized Multi-View Learning

    Full text link
    In many multilingual text classification problems, the documents in different languages often share the same set of categories. To reduce the labeling cost of training a classification model for each individual language, it is important to transfer the label knowledge gained from one language to another language by conducting cross language classification. In this paper we develop a novel subspace co-regularized multi-view learning method for cross language text classification. This method is built on parallel corpora produced by machine translation. It jointly minimizes the training error of each classifier in each language while penalizing the distance between the subspace representations of parallel documents. Our empirical study on a large set of cross language text classification tasks shows the proposed method consistently outperforms a number of inductive methods, domain adaptation methods, and multi-view learning methods.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Cross-Domain Labeled LDA for Cross-Domain Text Classification

    Full text link
    Cross-domain text classification aims at building a classifier for a target domain which leverages data from both source and target domain. One promising idea is to minimize the feature distribution differences of the two domains. Most existing studies explicitly minimize such differences by an exact alignment mechanism (aligning features by one-to-one feature alignment, projection matrix etc.). Such exact alignment, however, will restrict models' learning ability and will further impair models' performance on classification tasks when the semantic distributions of different domains are very different. To address this problem, we propose a novel group alignment which aligns the semantics at group level. In addition, to help the model learn better semantic groups and semantics within these groups, we also propose a partial supervision for model's learning in source domain. To this end, we embed the group alignment and a partial supervision into a cross-domain topic model, and propose a Cross-Domain Labeled LDA (CDL-LDA). On the standard 20Newsgroup and Reuters dataset, extensive quantitative (classification, perplexity etc.) and qualitative (topic detection) experiments are conducted to show the effectiveness of the proposed group alignment and partial supervision.Comment: ICDM 201

    Unsupervised Domain Adaptation on Reading Comprehension

    Full text link
    Reading comprehension (RC) has been studied in a variety of datasets with the boosted performance brought by deep neural networks. However, the generalization capability of these models across different domains remains unclear. To alleviate this issue, we are going to investigate unsupervised domain adaptation on RC, wherein a model is trained on labeled source domain and to be applied to the target domain with only unlabeled samples. We first show that even with the powerful BERT contextual representation, the performance is still unsatisfactory when the model trained on one dataset is directly applied to another target dataset. To solve this, we provide a novel conditional adversarial self-training method (CASe). Specifically, our approach leverages a BERT model fine-tuned on the source dataset along with the confidence filtering to generate reliable pseudo-labeled samples in the target domain for self-training. On the other hand, it further reduces domain distribution discrepancy through conditional adversarial learning across domains. Extensive experiments show our approach achieves comparable accuracy to supervised models on multiple large-scale benchmark datasets.Comment: 8 pages, 6 figures, 5 tables, Accepted by AAAI 202

    Combining multi-domain statistical machine translation models using automatic classifiers

    Get PDF
    This paper presents a set of experiments on Domain Adaptation of Statistical Machine Translation systems. The experiments focus on Chinese-English and two domain-specific corpora. The paper presents a novel approach for combining multiple domain-trained translation models to achieve improved translation quality for both domain-specific as well as combined sets of sentences. We train a statistical classifier to classify sentences according to the appropriate domain and utilize the corresponding domain-specific MT models to translate them. Experimental results show that the method achieves a statistically significant absolute improvement of 1.58 BLEU (2.86% relative improvement) score over a translation model trained on combined data, and considerable improvements over a model using multiple decoding paths of the Moses decoder, for the combined domain test set. Furthermore, even for domain-specific test sets, our approach works almost as well as dedicated domain-specific models and perfect classification

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure
    corecore