14 research outputs found

    Brain cone beam computed tomography image analysis using ResNet50 for collateral circulation classification

    Get PDF
    Treatment of stroke patients can be effectively carried out with the help of collateral circulation performance. Collateral circulation scoring as it is now used is dependent on visual inspection, which can lead to an inter- and intra-rater discrepancy. In this study, a collateral circulation classification using the ResNet50 was analyzed by using cone beam computed tomography (CBCT) images for the ischemic stroke patient. The remarkable performance of deep learning classification helps neuroradiologists with fast image classification. A pre-trained deep network ResNet50 was applied to extract robust features and learn the structure of CBCT images in their convolutional layers. Next, the classification layer of the ResNet50 was performed into binary classification as “good” and “poor” classes. The images were divided by 80:20 for training and testing. The empirical results support the claim that the application of ResNet50 offers consistent accuracy, sensitivity, and specificity values. The performance value of the classification accuracy was 76.79%. The deep learning approach was employed to unveil how biological image analysis could generate incredibly dependable and repeatable outcomes. The experiments performed on CBCT images evidenced that the proposed ResNet50 using convolutional neural network (CNN) architecture is indeed effective in classifying collateral circulation

    Visible-Infrared Person Re-Identification Using Privileged Intermediate Information

    Full text link
    Visible-infrared person re-identification (ReID) aims to recognize a same person of interest across a network of RGB and IR cameras. Some deep learning (DL) models have directly incorporated both modalities to discriminate persons in a joint representation space. However, this cross-modal ReID problem remains challenging due to the large domain shift in data distributions between RGB and IR modalities. % This paper introduces a novel approach for a creating intermediate virtual domain that acts as bridges between the two main domains (i.e., RGB and IR modalities) during training. This intermediate domain is considered as privileged information (PI) that is unavailable at test time, and allows formulating this cross-modal matching task as a problem in learning under privileged information (LUPI). We devised a new method to generate images between visible and infrared domains that provide additional information to train a deep ReID model through an intermediate domain adaptation. In particular, by employing color-free and multi-step triplet loss objectives during training, our method provides common feature representation spaces that are robust to large visible-infrared domain shifts. % Experimental results on challenging visible-infrared ReID datasets indicate that our proposed approach consistently improves matching accuracy, without any computational overhead at test time. The code is available at: \href{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI}{https://github.com/alehdaghi/Cross-Modal-Re-ID-via-LUPI

    End-to-End Domain Adaptive Attention Network for Cross-Domain Person Re-Identification

    Full text link
    Person re-identification (re-ID) remains challenging in a real-world scenario, as it requires a trained network to generalise to totally unseen target data in the presence of variations across domains. Recently, generative adversarial models have been widely adopted to enhance the diversity of training data. These approaches, however, often fail to generalise to other domains, as existing generative person re-identification models have a disconnect between the generative component and the discriminative feature learning stage. To address the on-going challenges regarding model generalisation, we propose an end-to-end domain adaptive attention network to jointly translate images between domains and learn discriminative re-id features in a single framework. To address the domain gap challenge, we introduce an attention module for image translation from source to target domains without affecting the identity of a person. More specifically, attention is directed to the background instead of the entire image of the person, ensuring identifying characteristics of the subject are preserved. The proposed joint learning network results in a significant performance improvement over state-of-the-art methods on several benchmark datasets.Comment: submitted to IEEE Transactions on Information Forensics and Securit

    Bi-Directional Center-Constrained Top-Ranking for Visible Thermal Person Re-Identification

    No full text

    Shape-centered Representation Learning for Visible-Infrared Person Re-identification

    Full text link
    Current Visible-Infrared Person Re-Identification (VI-ReID) methods prioritize extracting distinguishing appearance features, ignoring the natural resistance of body shape against modality changes. Initially, we gauged the discriminative potential of shapes by a straightforward concatenation of shape and appearance features. However, two unresolved issues persist in the utilization of shape features. One pertains to the dependence on auxiliary models for shape feature extraction in the inference phase, along with the errors in generated infrared shapes due to the intrinsic modality disparity. The other issue involves the inadequately explored correlation between shape and appearance features. To tackle the aforementioned challenges, we propose the Shape-centered Representation Learning framework (ScRL), which focuses on learning shape features and appearance features associated with shapes. Specifically, we devise the Shape Feature Propagation (SFP), facilitating direct extraction of shape features from original images with minimal complexity costs during inference. To restitute inaccuracies in infrared body shapes at the feature level, we present the Infrared Shape Restitution (ISR). Furthermore, to acquire appearance features related to shape, we design the Appearance Feature Enhancement (AFE), which accentuates identity-related features while suppressing identity-unrelated features guided by shape features. Extensive experiments are conducted to validate the effectiveness of the proposed ScRL. Achieving remarkable results, the Rank-1 (mAP) accuracy attains 76.1%, 71.2%, 92.4% (72.6%, 52.9%, 86.7%) on the SYSU-MM01, HITSZ-VCM, RegDB datasets respectively, outperforming existing state-of-the-art methods
    corecore