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Reducing Estimation Bias via Triplet-Average Deep
Deterministic Policy Gradient

Dongming Wu, Xingping Dong, Jianbing Shen, Senior Member, IEEE, and Steven C. H. Hoi, Fellow, IEEE

Abstract—The overestimation caused by function approxima-
tion is a well-known property in Q-learning algorithms, especially
in single critic models, which leads to poor performance in practi-
cal tasks. However, the opposite property, underestimation, which
often occurs in Q-learning methods with double critics, has been
largely left untouched. In this paper, we investigate the underesti-
mation phenomenon in the recent Twin Delay Deep Deterministic
actor-critic algorithm and theoretically demonstrate its existence.
We also observe that this underestimation bias does indeed hurt
performance in various experiments. Taking into account the
opposite properties of single critic and double critic methods,
we propose a novel Triplet Average Deep Deterministic policy
gradient algorithm that takes the weighted action-value of three
target critics to reduce the estimation bias. Given the connection
between estimation bias and approximation error, we suggest
averaging previous target values to reduce per-update error and
further improve performance. Extensive empirical results over
various continuous control tasks in OpenAI gym show that our
approach outperforms the state-of-the-art methods. Our source
code is available at https://github.com/shenjianbing/TADDRL.

Index Terms—Deep reinforcement learning, estimation bias,
triplet networks, averaging technology.

I. INTRODUCTION

In recent years, it has witnessed the huge success of deep
reinforcement learning (DRL) in a variety of real-world tasks,
such as playing the game of Go [40], [42], after the pioneering
work Deep Q Network (DQN) [31] successfully combined the
sensory ability of deep neural network function approximation
with decision ability of Q-learning. However, there still exist
several issues blocking its extension to more tasks with
systematic overestimation bias being one well-known problem
in value-based reinforcement learning, such as Q-learning [45].

The overestimation phenomenon occurs when the value
estimated by a function approximation is larger than the
actual value and is observed in Q-learning with a discrete
action setting by Thrun et al. [45]. The main causes are
attributed to the max operator and insufficiently flexible

This work was supported in part by the Beijing Natural Science Foundation
under Grant 4182056. Specialized Fund for Joint Building Program of Beijing
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function approximation [45] or noise [20], [49], or more
generally inaccurate action values [48]. Since a current action-
value is updated using an imprecise estimate of a subsequent
state, the overestimation bias is further exaggerated by the
nature of temporal difference learning [44], further resulting
in the policy becoming suboptimal or even divergence.

Considering the connection between overestimation bias
and variance or error at each update, numerous approaches
tried to directly minimize the size of errors at each time step
by averaging value estimates [2], [3], adding penalizing or
correcting terms to the policy [14], [28] and applying smoothed
value functions [32]. On the other hand, it is noted that
the overestimation bias often occurs in single critic methods,
such as DQN [31] and DDPG [29]. Thus, some approaches
have tried to use two critics to reduce the overestimation
bias for robust performance in both discrete action [20], [48]
and continuous control settings [16]. For instance, Double
DQN [48] makes unbiased value estimates by decoupling the
selection and adoption of the best action using two independent
estimators, which has been successfully applied to discrete
actions. However, this approach is not effective in avoiding
overestimation in continuous domains, such as actor-critic
algorithms [16]. To overcome overestimation in the actor-critic
setting, the recent Twin Delayed Deep Deterministic policy
gradient algorithm (TD3) [16] applied a pair of critic functions
for value estimation and took the minimum between these
two estimates for target updating. This minimization operation
is effective in alleviating the overestimation phenomenon in
continuous control settings, but it may cause an underestimation
bias at each updating iteration. Although this bias will not
be explicitly propagated during updating [16], the inaccurate
estimation still negatively affects the performance, which is
shown in our experiments. Fujimoto et al. afterward introduce
a simple solution, Batch-Constrained deep Q-learning (BCQ)
[15], for limiting underestimation phenomenon in TD3.

Few previous works pay attention to the underestimation phe-
nomenon occurring in some value-based reinforcement learning
approaches, like TD3. In this paper, we focus on the impact
of the underestimation phenomenon on the performance. We
begin by establishing the property of underestimation bias for
the recent actor-critic algorithm, TD3, in a continuous control
setting. Theoretically, we demonstrate that TD3 suffers from
the underestimation bias even when its two critic functions give
an unbiased estimation for the true critic, which is caused by
a function approximation error and the minimization operation.
We also observe that the underestimation phenomenon occurs
and indeed hurts the performance in practical tasks.

As mentioned before, the overestimation phenomenon often
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occurs in single critic algorithms and double critics approaches
may bring underestimation bias. Can we combine these two
opposite biases to achieve a more accurate estimation? To
answer this question, we explore a combination of these two
estimation biases in actor-critic algorithms for the continuous
setting. More specifically, we propose a novel Triplet Average
Deep Deterministic policy gradient algorithm (TADD), which
takes the weighted action-value of triplet critics and an average
Q-value approach for robust target updating. In the framework
of triplet critics, we apply twin critics and select the minimum
estimation to simulate underestimation and add a single critic to
provide the overestimation value. Then, we take the weighted
average of these two estimations as the final critic value to
update the policy. The triplet critics mechanism successfully
reduces the estimation bias, including the overestimation in
the single critic method and the underestimation in the twin
critics approach, in both theoretical and experimental results.
Besides, considering the connection between the estimation
bias and noise, caused in particular by high variance, we add
an average Q-value method into our single critic to address
variance reduction for better value estimation.

The major contributions are summarized as follows:
• We theoretically prove that underestimation bias occurs

during the minimization operation between two critics,
and demonstrate its negative impact on the twin critics
method TD3. To the best of our knowledge, this is the
first work to analyze the underestimation phenomenon
both theoretically and experimentally.

• A novel triplet critics mechanism is incorporated into the
deep deterministic policy gradient algorithm to reduce the
estimation bias for both theory and practical tasks.

• To further decrease the estimation bias, we propose an
average Q-value method for the actor-critic method to do
variance reduction and provide a theoretical analysis to
prove its effectiveness.

• Through more accurate action-value estimation, our ap-
proach achieves better performance than the state-of-the-
art methods on several control tasks from OpenAI gym.

II. PRELIMINARIES

Deep reinforcement learning (DRL), the task of learning the
optimal control policy with interactions with environment, had
achieved huge development in many areas like playing games
[40], [42], computer vision [19], [12], network architecture
search [4], [10], [47] and imitation learning [23]. In this work,
we formulate the standard reinforcement learning (RL) as a
Markov decision process (MDP), defined by a tuple M =
(S,A, p, p0,R, γ) that consists of a state space S, an action
space A, a transition kernel p, an initial state distribution p0,
a reward function R, and a discount factor γ ∈ [0, 1]. The
goal of reinforcement learning is to find an optimal policy that
maximize its expectation of a discounted cumulative reward
Rt =

∑∞
t′=t γ

t′−trt′ , where rt′ = R(st′ , at′). In deterministic
policy mapping states to a specific action, action-value function
(or Q-function) Q(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a] is
used to evaluate the policy, further guiding to learn the optimal
policy owning the biggest value, which means that precise
estimate value plays an essential role.

When p is unknown, the Q-function can be recursively
approximated using the following Bellman equation with a
transition (s, a, r, s′) (action a is executed at state s, leading
to reward r and next state s′):

Q(s, a) = r + γEs′∼S,a′∼π[Q(s′, a′)]. (1)

However, function approximation, especially when combined
with a neural network, i.e. deep reinforcement learning (DRL),
is prone to causing estimation variance due to its generalization,
and further estimation bias due to the value iteration. In the
following, we provide some mathematical background for these
algorithms related to our work: DQN, DDPG, and TD3.

A. Deep Q-Network (DQN)

DQN [31] uses a Deep Neural Network (DNN) as function
approximation that for a given state s outputting the action-
value of policy, Q(s, a). For addressing the instability from
the combination between nonlinear function like DNN and
Q-learning, DQN introduces two important technologies: ex-
perience replay and target network. When the estimate of the
optimal action-value, Q∗(s, a), is learned by minimizing the
following loss function with respect to the neural network
parameters θ according to Bellman equation (1):

L(θ) = E(s,a,r,s′)∼B[(y −Q(s, a; θ))2], (2)

here yis,a = r + γmaxa′∈AQ(s′, a′; θ′) is target value con-
structed using the fixed and separate target network with
parameters θ′ which is copied from network parameters θ
for every fixed time-steps to reduce the correlation between
target value and online value, and B is a replay buffer to
store and relay experience transitions, which eliminates the
correlation of sampled trajectory data.

Although DQN can achieve human-level control in many
real-world games like Atari, there still are many imperfect
places in it. In order to achieve better performance, plenty of
excellent approaches has been proposed to upgrade DQN, such
as accurate value estimation [48], [51], recurrent neural network
[21], highlight experience replay [36], advanced exploration
strategy [6], [39], [46], [21], function regularization [17] and
etc. However, these methods favor discrete action, and can’t
handle with continuous action, a situation largely existing in
real-world tasks. Considering this concern, policy gradient
methods like Asynchronous Advantage Actor-Critic (A3C)
[30], Trust Region Policy Optimization (TRPO) [37], Proximal
Policy Optimization (PPO) [38], Soft Actor-Critic (SAC) [18]
appeared, and DDPG, an actor-critic method based on the value
function and the deterministic policy, also has a major impact
for continuous setting due to its simplicity and effectiveness.

B. Deep Deterministic Policy Gradient (DDPG)

Silver et al. [41] proposed a Deterministic Policy Gradient
method (DPG), which uses deterministic policy instead of the
usual stochastic policy in actor-critic algorithm with continuous
actions. This simple form is more efficient for action-value
estimation in high-dimensional action spaces. Lillicrap et al.
[29] incorporated a DNN into DPG (DDPG), which uses a
learned value estimator critic to train a deterministic policy
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actor. The deterministic policy specifies one action with the
guidance of the single critic. We denote the parameters of the
actor π and critic Q as φ and θ, respectively. Similarly, the
target actor π′ and target critic Q′ are denoted as φ′ and θ′.
The critic estimates Q-values and updates its parameters by
minimizing the following loss, using collected experience in a
replay buffer B:

L(θ) = E(s,a,r,s′)∼B[(y −Q(s, a | θ))2], (3)

where y = r+ γQ′(s′, π′(s′)) is the target value based on the
independent target critic network. This loss function also stems
from the Bellman equation (1). The actor is updated in the direc-
tion of the critic’s action-value gradient by applying the chain
rule to the expected return J(φ) =

∫
S ρ(s)R(s, πφ(s))ds,

where ρ(s) is state distribution [41]:

∇φJ ≈
1

N

∑
i

∇aQ(s, a | θ) |s=si,a=π(si) ∇φπ(s | φ) |si .

(4)
After updating θ and φ by using Eq. (3) and (4), DDPG

uses a soft target update:

θ′ = τθ + (1− τ)θ′, φ′ = τφ+ (1− τ)φ′, (5)

where τ � 1 greatly improves the learning stability due to its
slow changing.

Following DDPG, additional extensions to the basic algo-
rithm have further increased its performance. Several works
have made use of distributed methods [34], [5], [13], [7] and
prioritized experience replay [1], [24], [50] to deal with data
efficiency. The recent works [35], [26], [25] proposed a com-
bination with the evolutionary strategy for better performance.

C. Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 [16], an extension of DDPG, is also a deep deterministic
actor-critic algorithm. TD3 takes a minimum value between
a pair of critics, named clipped Double Q-learning, as a
target value estimate. Through this method, if one critic is
overestimated, the other will be chosen, thereby limiting
overestimation phenomenon. This is different from DDPG
taking the only critic-value directly. Similar to DDPG, TD3
uses the loss function (3) but y = r+γmini=1,2Q

′
i(s
′, π′(s′)),

where Q′1 and Q′2 represent two target critics corresponding
to a pair of independent critics Q1 and Q2. The single actor
π is optimized with respect to Q1 according to function (4).
Moreover, TD3 uses delaying policy updates to reduce per-
update error and target policy smoothing regularization by
adding noise into the target policy to relieve over-fitting.

III. THE UNDERESTIMATION PHENOMENON

In this section, we begin with a theoretical analysis of the
underestimation phenomenon under the minimization operation
between two critics. Then we show its negative effect in a
recent actor-critic algorithm TD3, which also has the same
minimization operation.

According to the Bellman equation (1) and loss function
(3), the minimum between two critic values (or Q-values) over
the next states is employed to update two critic functions (or

Q-functions) over an experience transition (s, a, r, s′) in the
actor-critic method, like TD3:

Q(s, a)←− r + γ min
i=1,2

Qi(s
′, π′(s′)). (6)

To better understand the effect of minimization, we define
Qapprox1 and Qapprox2 as two independent estimate Q-values of
two critics, which approximate the hypothetical true value
Qtrue. Due to the noise induced by function approxima-
tion, there exists an error term Y is′ = Qapproxi (s′, π′(s′)) −
Qtrue(s′, π′(s′)) that overestimates Q-values for i = 1, 2,
where the error can be modeled by an independent and identical
uniform distribution in the interval [−ε, ε]. The minimization
operation over two estimate Q-values further introduces some
errors to the left-hand term of equation (6), denoted by Zs:

Zs = r+γ min
i=1,2

Qapproxi (s′, π′(s′))−
(
r+γQtrue(s′, π′(s′))

)
= γmin

(
Y 1
s′ , Y

2
s′
)
.

(7)
To analyze the expected error E[Zs], we first give Theorem

1 and its proof.
Theorem 1: Let Qtrue denotes the only true value and

assume there are M estimate values Qapproxi to approximate
it for i = 1, · · · ,M . If the error of each approximation
value, denoted as Y i = Qapproxi −Qtrue, is independently
and identically uniformly distributed in the interval [−ε, ε], the
average underestimation of the minimum of all approximation
values is E[mini=1,··· ,M (Y i)] = −M−1M+1ε.

Proof: Since there are M error variables Y i identically
uniformly distributed in [−ε, ε] for i = 1, · · · ,M , we can
denote their same probability density as f(x) :

f(x) =

{
1
2ε x ∈ [−ε, ε]
0 x ∈ else.

Then, we can derive that for all variables Y i:

P (Y i > x) =

 1 if x ≤ −ε
ε−x
2ε if x ∈ (−ε, ε)
0 if x ≥ ε.

Because these estimation error variables Y i are inde-
pendent and identically distributed, the probability that
mini=1,··· ,M Y i ≥ x is equal to the probability that Y i ≥ x
for all M variables simultaneously and we can get that:

P ( min
i=1,··· ,M

Y i > x) =
∏

i=1,··· ,M
P (Y i > x)

=


1 if x ≤ −ε(

ε−x
2ε

)M
if x ∈ (−ε, ε)

0 if x ≥ ε.

The cumulative distribution function of mini=1,··· ,M Y i is
P (mini=1,··· ,M Y i ≤ x):

P ( min
i=1,··· ,M

Y i ≤ x) =


0 if x ≤ −ε

1−
(
ε−x
2ε

)M
if x ∈ (−ε, ε)

1 if x ≥ ε.
This implies that we can get the probability density of

this variable by using the derivative of the cumulative dis-
tribution function: fmin(x) = d

dxP (mini=1,··· ,M Y i ≤ x) =
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Fig. 1: Simulation of underestimation bias under minimization operation. The left column shows a true value (blue) and an
estimate (purple) over some sampled noisy data (black dots). The middle column shows the average values of over one thousand
estimations with different error-disturbance bounds ε. The shaded region represents a standard deviation of the average. The
right shows the expected estimation bias, where the underestimation bias increases with rising error.

M
2ε ( ε−x2ε )M−1 for x ∈ (−ε, ε). Now we write expectation as
an integral in terms of the probability density:

E[ min
i=1,··· ,M

Y i] =

∫ ε

−ε
xfmin(x)dx

=

∫ ε

−ε
x
M

2ε
(
ε− x

2ε
)M−1dx

= −M
∫ 0

1

(ε− 2εy)yM−1dy for y =
ε− x

2ε

= −M − 1

M + 1
ε.

Thus, we prove theorem 1.
Considering Theorem 1 for M = 2, we can easily derive

the expected error E[Zs] due to the minimization operation
between two critics, like TD3:

E[Zs] = −1

3
γε < 0. (8)

Thus, even if the approximations are unbiased, the minimiza-
tion operation can easily introduce a negative expected bias, i.e.
E[Zs] < 0, at each update, which can be called underestimation
phenomenon.

To sum up, the inaccurate function approximation and mini-
mization operation between two critics result in underestimation
bias. We consider a simple fitting process to simulate underes-
timation bias with the true values for a continuous state space,
Qπ(s, πapprox(s)), with a fixed approximate actor πapprox(s).
For convenience, we denote Qπ(s, πapprox(s)) = Qπ(s).
The real values are shown in the left column of Figure 1,
Qπ(s) = 2 sin(x) for instance. Considering the impact of
inaccurate function approximation for sampled trajectory, we
directly sample 13 noisy data (black dots) from true values
as alternatives, where the noise is drawn from an uniform
distribution bounded in [−ε, ε]. Then, we fit them as estimate
values by an 8-degree polynomial. We take a minimum of
two fitting data at each evaluation and average one thousand
fitting results as the final estimation result, as shown in the
middle column. The results in the right column show that
the bias is negative, indicating an underestimation happening,

which means that the minimum of inaccurate values can cause
underestimation. We also investigate the effect of different
error-disturbance intervals by changing the value of ε.

a) Does this theoretical underestimation occur in practice
for TD3: The results on the OpenAI gym environments
Ant-v2 [9] suggest that underestimation occurs in TD3. In
Figure 2(a), we plot the average estimate value of TD3 without
a target policy smoothing regularization operation, starting
from 10 initial states and compare it to the true value. The
true value is the discounted cumulative reward based on
the current policy and states. The underestimation bias of
TD3 is very clear, and our proposed TADD, described in the
following section, obviously reduces the underestimation bias
in practice (see Figure 2(b)). More importantly, the true values
of TADD are higher than TD3, indicating that our method
improves performance by mitigating underestimation [48]. In
addition, we also show that the single critic method DDPG
produces overestimation in Ant-v2, which means in the same
environment, DDPG tends to suffer from overestimation, while
underestimation occurs for TD3. Thus, we can combine these
two opposite properties to design our new algorithm.

IV. TRIPLET AVERAGE DEEP DETERMINISTIC POLICY
GRADIENT

Based on the above observation, we propose a framework
of triplet critics, to reduce the estimation bias, and prove its
effectiveness in both theory and practice. Then, based on the
connection between estimation bias and high variance, we
present an average Q-value method to further reduce bias.

A. Triplet critics

As a single critic algorithm, DDPG produces an overes-
timation bias, while, as mentioned above, TD3 brings an
underestimation bias due to the minimization operation between
double critics. Intuitively, we can combine these two opposite
biases to achieve a more accurate estimation. Building on TD3
and DDPG, we form a novel algorithm, named Triplet Deep
Deterministic policy gradient algorithm (TDD), which uses the
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(a) TD3 vs DDPG (b) TADD vs TD3 (c) TADD vs TDD

Fig. 2: Illustration of estimation bias for TD3, DDPG, TADD, and TDD, on environment Ant-v2 over one million time steps.
The marked lines are true values and the non-marked are estimate values. The shaded region represents a standard deviation of
the averaged evaluation over 10 trials.

weighted minimum Q-value between a pair of critics and the
Q-value of a regular critic to obtain the target update:

y = r+γ{β min
i=1,2

Q′i(s
′, πφ′(s

′))+(1−β)Q′3(s′, πφ′(s
′)} (9)

where β ∈ (0, 1) is the weight of double critics. During
implementation, we use a single actor optimized with respect
to Q1 and set the same target value y for Q1, Q2 and Q3. At
each update, Qi is assumed to be an unbiased estimation with
bound ε for i = 1, 2, and the expected estimation bias of double
critics is E[Zdoubles ] = − 1

3γε, as TD3. Note that a single critic
method like DDPG always favors overestimation. Thus, we
can assume Q3 is overestimated with the same hypothesis
bias of DDPG E[Zsingles ] = E[ZDDPGs ] = λ > 0. Due to the
weighting operation in our TDD, our expected estimation bias
becomes E[ZTDDs ] = − 1

3βγε+ (1− β)λ.
Based on above assumptions, we can find our estimation

bias is larger than TD3 and less than DDPG:

E[ZTD3
s ] < E[ZTDDs ] < E[ZDDPGs ], (10)

which means that our method TDD effectively reduces the
estimation bias compared with TD3 or DDPG. When β =

3λ
γε+3λ , E[ZTDDs ] = 0. This indicates our approach can make
unbiased estimation with some reasonable assumptions and a
good choice of weight. The experiments in the next section
show that the larger weight β can complete it in most cases.

In the following, to confirm the convergence of our proposed
method, TDD, we also provide a proof of convergence in the
finite MDP setting, as Theorem 2. For accelerating our proof,
we first give the known certified theory Lemma 1, and after
that, show the Theorem 2 and its proof. First of all, referring
to the clipped Double Q-learning of TD3, we denote three
critics of TDD as weighted Triplet Q-learning. In a version of
our weighted Triplet Q-learning for a finite MDP setting, we
maintain three tabular value estimates QA, QB , QC . At each
time step, we update the value estimates with respect to the
target value y and learning rate αt(s, a):

QA(s, a) = QA(s, a) + αt(s, a)(y −QA(s, a))

QB(s, a) = QB(s, a) + αt(s, a)(y −QB(s, a))

QC(s, a) = QC(s, a) + αt(s, a)(y −QC(s, a)).

The target value y is set by selecting the optimal actions a∗

based on the next states s′ according to loss function (9):

a∗=arg max
a

QA(s′, a),

y=r+γ
[
βmin(QA(s′, a∗), QB(s′, a∗))+(1−β)QC(s′, a∗)

]
.

In this proof, we borrow heavily from the proofs of
convergence of SARSA [43], Double Q-learning [20] and
TD3 [16], which are actually in the same line. The proof of
Lemma 1 builds on the work of Bertsekas [8] and was proposed
by Singh et al. [43].

Lemma 1: Consider a stochastic process (ζt,∆t, Ft), t ≥ 0,
where ζt,∆t, Ft : X −→ R satisfy the equation:

∆t+1(xt) = (1− ζt(xt))∆t(xt) + ζt(xt)Ft(xt),

where xt ∈ X and t = 0, 1, 2, · · · . Let Pt be a sequence of
increasing σ−fields such that ζ0 and ∆0 are P0−measurable
and ζt,∆t and Ft−1 are Pt−measurable, t = 1, 2, 3, · · · .
Assume that the following hold:
1) The set X is finite.
2) ζt(xt) ∈ [0, 1],

∑
t ζt(xt) = ∞,

∑
t(ζt(xt))

2 < ∞ with
probability 1 and ∀x 6= xt : ζ(x) = 0.
3) ||E[Ft|Pt]|| < κ||∆t|| + ct, where κ ∈ [0, 1) and ct
converges to 0 with probability 1.
4) Var[Ft(xt)|Pt] < K(1 + κ||∆t||2), where K is some
constant.
where || · || denotes the maximum norm. Then ∆t converges
to 0 with probability 1.

Theorem 2: Given the following conditions:
1) Each state action pair is sampled an infinite number of
times.
2) The MDP is finite.
3) γ ∈ [0, 1).
4) Q-values are stored in a lookup table.
5) QA, QB and QC receive an infinite number of updates.
6) The learning rates αt(s, a) ∈ [0, 1],

∑
t at(s, a) =

∞,
∑
t(at(s, a))2 < ∞ with probability 1 and αt(s, a) =

0,∀(s, a) 6= (st, at).
7) Var[r(s, a)] <∞,∀s, a.
Then, the weighted Triplet Q-learning will converge to the
optimal value function Q∗, as defined by the Bellman optimality
equation, with probability 1.
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Fig. 3: Visualization of forward propagation process for (a) DDPG, (b) TD3 and (c) TDD. The target critics (green) are separate
and used to calculate the Q-value of the next states and actions for substantial target value. The target value y is calculated
with different operators (yellow and circled), where ’min’ means a minimum of two values, ’W’ means weighting operation
and ’-’ means subtraction.

Proof: We apply Lemma 1 with Pt =
{QA0 , QB0 , QC0 , s0, a0, α0, r1, s1, ·, st, at}, X = S × A,∆t =
QAt −Q∗, ζt = αt. Notice that, the condition 1, 2, 4 of Lemma
1 hold with respect to the conditions 2,6,7 of Theorem 2. Next,
we will find out whether the condition 3 of Lemma 1 holds.

Defining a∗ = arg maxaQ
A
t (st+1, a), we have that:

∆t+1(st, at)

= (1− αt(st, at))(QAt (st, at)−Q∗(st, at))
+ αt(st, at)

{
rt + γ

[
βmin(QAt (st+1, a

∗), QBt (st+1, a
∗))

+ (1− β)QCt (st+1, a
∗)
]
−Q∗(st, at)

}
= (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at),

where Ft(st, at) is defined as:

Ft(st, at)=rt + γ
[
βmin(QAt (st+1, a

∗), QBt (st+1, a
∗))

+(1− β)QCt (st+1, a
∗)
]
−Q∗(st, at)

= rt + γ
[
βmin(QAt (st+1, a

∗), QBt (st+1, a
∗))

+ (1− β)QCt (st+1, a
∗)
]
−Q∗(st, at)

+ γQAt (st+1, a
∗)− γQAt (st+1, a

∗)

= FQt (st, at) + ct,

where FQt (st, at) = rt + γQAt (st+1, a
∗) − Q∗(st, at)

is the value of Ft under normal Q-learning and ct =
γ
[
βmin(QAt (st+1, a

∗), QBt (st+1, a
∗))+(1−β)QCt (st+1, a

∗)
]

−γQAt (st+1, a
∗). It is well-known that E[FQt |Pt] ≤ γ||∆t||,

so, to apply condition 3 of the Lemma 1, we need identify the
convergence of ct.

We rewrite ct as:

ct = γ
[
βmin(QAt (st+1, a

∗), QBt (st+1, a
∗))

+(1− β)QCt (st+1, a
∗)
]
− γQAt (st+1, a

∗)

= γβ
[
min(QAt (st+1, a

∗), QBt (st+1, a
∗))−QAt (st+1, a

∗)
]︸ ︷︷ ︸

ct1

+ γ(1− β)
[
QCt (st+1, a

∗)−QAt (st+1, a
∗)
]︸ ︷︷ ︸

ct2

= ct1 + ct2.

According to the analysis of TD3, we have the convergence
of ct1, and we need to further identify the convergence
of ct2. Let y = βmin(QAt (st+1, a

∗), QBt (st+1, a
∗)) + (1 −

β)QCt (st+1, a
∗) and ∆CA

t (st, at) = QCt (st, at)−QAt (st, at):

∆CA
t+1(st, at)

= ∆CA
t (st, at)+αt(st, at)(y−QCt (st, at)−(y−QAt (st, at)))

= ∆CA
t (st, at)+αt(st, at)(Q

A
t (st, at)−QCt (st, at))

= (1−αt(st, at))∆CA
t (st, at).

It is very clear that ∆CA
t+1(st, at) will converge to 0, further

implying that ct2 and ct will converge to 0 with probability 1,
when condition 3 of Lemma 1 holds. Therefore, we can get that
QA(st, at) converges to Q∗(st, at). Using similar methods, we
can get the convergence of both QB(st, at) and QC(st, at).
Thus, we prove Theorem 2.

To better understand the differences between the three
algorithms, we visualize several forward propagation processes
for DDPG, TD3 and TDD in Figure 3. St, at and st+1 are
the data sampled from a replay buffer, and used to calculate
the Q-value and Temporal Difference error (TD-error). For
concision, we don’t display the process of back propagation.
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B. Variance Reduction by Average Q-value

Although the double critics method induces underestimation
bias, it actually decreases the estimation noise, especially that
caused by high variance, at each update. However, the high
variance of the single critic in the simple combination causes
a significant impact on our entire estimation bias during value
iteration, as shown in Figure 2(c). To reduce the per-update
variance for further controlling the magnitude of the bias, we
propose an average Q-value method for the single critic. During
practical learning, target approximation error is denoted as
estimation noise Zt at time step t, determined after minimizing
the loss function (3) for an individual update:

Zt = Q(s, a; θt)− yt = Q(s, a; θt)− (r + γQ(s′, a′; θ′t)) ,
(11)

where θ′t = τ tθ0+
∑t
j=1 τ

t−j(1−τ)θj is the weighted internal
parameter of previous networks according to the soft target
update in equation (5). The target approximation error mainly
comes from two sources: the sub-optimum of θi, resulting
from the local minimum of deep neural networks, and the
generality error from not obtaining infinite state-action pairs
when sampling. Next, for simplicity, we assume the Q-value
over the next states as:

Q(s′, a′; θ′t) = τ tQ(s′, a′; θ0) +

t∑
j=1

τ t−jQ(s′, a′; θj) +Dt,

(12)
where we directly use weighted Q-value of networks with
previous parameter to replace the Q-value of a network with
weighted internal parameter, and the deviation between them is
denoted as Dt. Employing functions (11) and (12), we obtain
the Q-value, Qsingle, when the agent begins at state s0, and
terminates at state sN :

Qsingle(s0, a; θt) = Zt + r + γQ(s1, a; θ′t)

= Zt + r + γ

[
τ tQ(s1, a; θ0)

+

t∑
j1=1

τ t−j1(1− τ)Q(s1, a; θj1) +Dt

]
= Zt + r︸ ︷︷ ︸

U0

+ γτ tQ(s1, a; θ0)︸ ︷︷ ︸
V0

+ γDt︸︷︷︸
W0︸ ︷︷ ︸

A0

+ γ

t∑
j1=1

τ t−j1(1− τ)Q(s1, a; θj1)

= A0 + γ

t∑
j1=1

τ t−j1(1− τ)

[
Zj1 + r + γ

(
τ j1Q(s2, a; θ0)

+

j1∑
j2=1

τ j1−j2(1−τ)Q(s2, a; θj2)+Dj1

)]

= A0 + γ

t∑
j1=1

τ t−j1(1− τ)(Zj1 + r)︸ ︷︷ ︸
U1

+ γ2
t∑

j1=1

τ t(1− τ)Q(s2, a; θ0)︸ ︷︷ ︸
V1

+ γ2
t∑

j1=1

τ t−j1(1− τ)Dj1︸ ︷︷ ︸
W1

+ γ2
t∑

j1=1

j1∑
j2=1

τ t−j2(1− τ)2Q(s2, a; θj2)

= A0 +A1 + γ2
t∑

j1=1

j1∑
j2=1

τ t−j2(1− τ)2(Zj2 + r)︸ ︷︷ ︸
U2

+ γ3
t∑

j1=1

j1∑
j2=1

τ t(1− τ)2Q(s3, a; θ0)︸ ︷︷ ︸
V2

+ γ3
t∑

j1=1

j1∑
j2=1

τ t−j2(1− τ)2Dj2︸ ︷︷ ︸
W2

+ γ3
t∑

j1=1

j1∑
j2=1

j2∑
j3=1

τ t−j3(1− τ)3Q(s3, a; θj3)

=

N∑
n=0

An =

N∑
n=0

(Un + Vn +Wn) ,

(13)

where

Un = γn
(∑)

τ t−jn(1− τ)n(Zjn + r),

Vn = γn+1
(∑)

τ t(1− τ)n(Q(sn+1, a; θ0)),

Wn = γn+1
(∑)

τ t−jn(1− τ)nDjn .

If n > 0: (∑)
=

t∑
j1=1

j1∑
j2=1

· · ·
jn−1∑
jn=1

,

else n = 0: (∑)
= 1, j0 = 0.

We assume that Zt is a zero-mean random variable with
variance V ar[Zt] = δ2 and E[r] = 0, V ar[r] = 0 for
simplicity. Thus, we can easily obtain the variance of a single
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Q-value under soft target update:

V ar[Qsingle(s0, a; θt)] =
N∑
n=0

{
γ2n
(∑)

τ2(t−jn)(1− τ)2nδ2 + V ar[Wn]

}
.

Our new method, named average Q-value, averages K
previous target Q-values:

Q(s′, a′; θ′t) =
1

K

K∑
k=1

Q(s′, a′; θ′t+1−k). (14)

We use the average Q-value based on the previous target critic
networks in the above equation instead of the original Q-
function in single critic method. In the following, we can
prove the effectiveness of average Q-value in variance reduction.
Similar to the above analysis and employing the above three
functions (11), (14), (12) in order, we can calculate the new
Q-value, Qaverage, agent starting at s0 and terminating at sN
as before, based on the average Q-value:

Qaverage(s0, a; θt)

= Zt + r + γQ(s1, a; θ′t)

= Zt + r + γ
1

K

K∑
k=1

Q(s1, a; θ′t+1−k1)

= Zt + r +
γ

K

K∑
k1=1

[
τ t+1−k1Q(s1, a; θ0)

+

t+1−j1∑
j1=1

τ t+1−k1−j1(1− τ)Q(s1, a; θj1) +Dt

]

= Zt + r︸ ︷︷ ︸
U ′0

+
γ

K

K∑
k1=1

τ t+1−k1Q(s1, a; θ0)︸ ︷︷ ︸
V ′0

+
γ

K

K∑
k1=1

Dt︸ ︷︷ ︸
W ′0︸ ︷︷ ︸

A′0

+
γ

K

K∑
k1=1

t+1−k1∑
j1=1

τ t+1−k1−j1(1− τ)Q(s1, a; θj1)

= A′0 +
γ

K

K∑
k1=1

•
t+1−k1∑
j1=1

τ t+1−k1−j1(1− τ)
[
Zj1 + r + γQ(s2, a; θ′j1)

]
= A′0 +

γ

K

K∑
k1=1

t+1−j1∑
j1=1

τ t+1−k1−j1(1− τ)(Zj1 + r)︸ ︷︷ ︸
U ′1

+
γ2

K2

K∑
k1=1

K∑
k2=1

t+1−k1∑
j1=1

τ t+2−k1−k2(1− τ)Q(s2, a; θ0)︸ ︷︷ ︸
V ′1

+
γ2

K2

K∑
k1=1

K∑
k2=1

t+1−k1∑
j1=1

τ t+1−k1−j1(1− τ)Dj1︸ ︷︷ ︸
W ′1

+
γ2

K2

K∑
k1=1

K∑
k2=1

t+1−k1∑
j1=1

•
j1+1−k2∑
j2=1

τ t+2−k1−k2−j2(1− τ)2Q(s3, a; θy3)

=

N∑
n=0

A′n =

N∑
n=0

(U ′n + V ′n +W ′n) ,

(15)
where

U ′n=
γn

Kn

[∑]
τ t+n−jn−k1−···−kn(1− τ)n(Zjn + r),

V ′n=
γn+1

Kn+1

[∑]
•

K∑
kn+1=1

τ t+n+1−k1−···−kn+1(1− τ)nQ(sn+1, a; θ0),

W ′n=
γn+1

Kn+1

[∑] K∑
kn+1=1

τ t+n−jn−k1−···−kn(1− τ)nDjn .

If n > 0:

[∑]
=

K∑
k1=1

K∑
k2=1

· · ·
K∑

kn=1

t+1−k1∑
j1=1

j1+1−k2∑
j2=1

· · ·
jn−1+1−kn∑

jn=1

,

else n = 0: [∑]
= 1, j0 = 0.

We can also easily derive the variance of average Q-value:

V ar[Qaverage(s0, a; θt)] =
N∑
n=0

{
γ2nBK,n(1− τ)2nδ2 + V ar[W ′n]

}
,

where BK,n = 1
K2n

∑K
k1=1 · · ·

∑K
kn=1

∑t+1−k1
j1=1

∑j1+1−k2
j2=1 . . .∑jn−1+1−kn

jn=1 τ2(t+n−jn−k1−···−kn) if n = 1, 2, · · · , N , else
BK,n = τ2t when n = 0.

We underline the difference between V ar[Qsingle(s0, a; θt)]
and V ar[Qaverage(s0, a; θt)]. For a more convenient com-
parison, we set the difference as Cn = (

∑
) τ2(t−jn) in

V ar[Qsingle(s0, a; θt)]. When n = 0,K = 1, it is obvious
that BK,n = Cn = τ2t. When n = 1,K > 1, we can calculate
C1 and BK,1 :

C1 =

t∑
j1=1

τ2(t−j1) =
τ2(t−1)(1− τ−2t)

1− τ−2

=
1

1− τ−2
[
τ2(t−1) − τ−2

]
.

(16)
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Algorithm 1 TADD

Input: Observation state S
Output: Action A

Randomly initialize critic networks Qθ1 , Qθ2 , Qθ3 and actor networks πφ with parameters θ1, θ2, θ3, φ
Initialize target networks θ′1 ←− θ1, θ′2 ←− θ2, θ′3 ←− θ3, φ′ = φ
Initialize experience replay buffer B
Initialize target critic network replay buffer C with K previous networks [Qθ′3 ]1, · · · , [Qθ′3 ]K

for episode = 1, M do
Receive initial observation state s1
for t = 1,T do

Select action at = π(st) + ε according to the current policy and exploration noise ε ∈ N (0, σ)
Execute action at and observe reward rt and new state st+1

Store transition (st, at, rt, st+1) in B
Sample a random minibatch of N transitions (s, a, r, s′) from B
Set a′ = πφ′(s

′) + ε, ε ∼ clip(N (0,
∼
σ),−c, c)

Set Q′1 = mini=1,2Qθ′i(s
′, a′)

Set Q′2 = 1
K

∑
k[Qθ′3(s′, a′)]k

Set y = r + γ [βQ′1 + (1− β)Q′2]
Update critics θi by minimizing the loss: L = 1

N

∑
(y −Qθi(s, a))2

if t mod d then
Update the actor φ using deterministic policy gradient:

5φJ(φ) =
1

N

∑
5aQθ1(s, a)|a=πφ(s) 5φ πφ(s)

Update target networks:
θ′i = τθi + (1− τ)θ′i, φ′ = τφ+ (1− τ)φ′

Update C by popping up the oldest and filling the new target critic network
end if

end for
end for

BK,1 =
1

K2

K∑
k1=1

t+1−k1∑
j1

τ2(t+1−j1−k1)

=
1

K2

K∑
k1=1

τ2(t−k1) − τ−2

1− τ−2

=
1

K2(1− τ−2)

[
τ2(t−1)(1− τ−2K)

1− τ−2
−Kτ−2

]

=
1

(1− τ−2)

 (1− τ−2K)

(1− τ−2)K2︸ ︷︷ ︸
>1

τ2(t−1)− 1

K︸︷︷︸
>−1

τ−2


<

1

1− τ−2
[
τ2(t−1) − τ−2

]
= Cn,

(17)

where 1− τ−2 is negative.
Employing a mathematical induction method, we assume

that BK,n < Cn for n > 1. Therefore, we can derive that:

Cn+1 =

jn∑
jn+1=1

τ2(jn−jn+1)Cn. (18)

BK,n+1 =
1

K2

K∑
kn+1=1

jn+1−kn+1∑
jn+1=1

τ2(jn+1−jn+1−kn+1)BK,n.

(19)
The coefficients between (16) and (18), (17) and (19) are
similar, and, more importantly, the last term of (19) is less
than (18), i.e. BK,n < Cn. Then, referring to the calculation of
functions (16) and (17), we have BK,n+1 < Cn+1. Therefore,
we can easily get BK,n < Cn based on the mathematical
induction method for n > 0,K > 1. We assume that the
error and variance of Dt is constant across updates. Due to
the similarity between coefficients of both Un and Wn, we
can also derive that V ar[W ′n] < V ar[Wn] by using the same
method for n > 0,K > 1. Finally, we have

V ar[Qaverage(s0, a; θt)] < V ar[Qsingle(s0, a; θt)].

Thus, we prove that the method of average Q-value can reduce
variance of single critic.

Intuitively, the variance reduction method is similar to
Averaged-DQN [2], which also averages the previous target
action-values. However, there are two main differences: First-
ly, our method is applied to deep deterministic actor-critic
algorithms rather than simple DQN. Secondly, the soft target
update is analyzed in the process of iteration, which involves
the neural network itself.
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Fig. 4: Example MuJoCo environments. In order from the left: Ant-v2, HalfCheetah-v2, Hopper-v2, Walker2d-v2, Swimmer-v2,
InvertedDoublePendulum-v2.

TABLE I: Quantitative descriptions of MuJoCo environments for version 2 (v2). The first row represents the state dimension
and the second represents the action dimension, where both of them are continuous in each dimension.

Environments (v2) Ant HalfCheetah Hopper Swimmer Walker2d Reacher InvertedPendulum InvertedDoublePendulum

State Dimension 111 17 11 8 17 11 4 11
Action Dimension 8 6 3 2 6 2 1 1

(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2 (d) Swimmer-v2

(e) Walker2d-v2 (f) Reacher-v2 (g) InvertedPendulum-v2 (h) InvertedDoublePendulum-v2

TADD TD3 DDPG PPO SAC BCQ

Fig. 5: Qualitative performances on the OpenAI gym continuous control tasks. The results are obtained by running our TADD,
TD3, DDPG, PPO, and SAC over 10 trials. The darker lines show the median over the seeds. The shaded region represents a
standard deviation of the averaged evaluation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We present a Triplet-Average Deep Deterministic policy
gradient algorithm (TADD), building on DDPG and TD3 by
applying the modification described above for estimation bias
reduction. Specifically, at each update, we calculate the average
Q-value of a single critic and weight it with the minimum of
the other two critics as target value. In addition, we make use
of delaying policy update and target policy smoothing proposed
by Fujimoto et al. [16] for increasing stability and performance
of our algorithm. Here, we give more details of TADD and
summary it in Algorithm 1.

A. Implementation Details

To evaluate our algorithm, we measure its performance on
MuJoCo continuous tasks from OpenAI gym [9]. These tasks
provide both a low dimensional state vector describing joint
angles and position in Table I (including action vector), and
a high dimensional pixel rendering and examples in Figure 4,
where we only use the state vector as inputs. Moreover, we
directly employ the default reward function and environments
settings without any modification for fair comparison.

Due to the recent concern about reproducibility [22], [33]
and effective comparison [11], we run our experiments over
10 different random seeds and the network initialization. For
network architecture, TADD uses a two-layer fully connected
neural network of 400 and 300 hidden neurons, with rectified
linear units (ReLU) between each layer, for both actor and
critic, and a final tanh unit following the output of the actor.
Like TD3, both state and action are inputted into the first layer
of the critic. To minimize the loss of algorithms, the Adam
optimizer [27] is used to update both network parameters on a
mini-batch of 100 uniformly sampled transitions with a learning
rating of 10−3. The actor and both target critic networks are
updated every d = 2 iterations for delayed policy update, with
τ = 0.005.

For the trade-off of exploration and exploitation, we use the
off-policy exploration policy, adding Gaussian noise N (0, 0.1)
to each executed action. Additionally, we maintain exploring
without training before 10000 time steps for better collecting
experience. In target policy smoothing, the Gaussian noise
N (0, 0.2) is added to each action from the target actor network,
clipped to maximum action in terms of each task.

To better balance the overestimation and underestimation
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TABLE II: Average return for last 5 evaluations over 10 different random seeds. The second column show the results of our
method without the averaged operation (TDD). The last columns present the results obtained by running our TADD, TD3,
DDPG, PPO, and SAC. Best results are in bold.

Environment TADD TDD TD3 DDPG PPO SAC BCQ

Ant-v2 5178.36±387.72 5057.01 4469.44 475.06 840.08 1003.61 4381.48
HalfCheetah-v2 10696.31±445.12 10191.83 9340.67 9538.28 1875.94 4242.29 9169.74
Hopper-v2 3634.19±160.33 3463.93 2770.74 2239.08 2099.52 1544.36 2725.24
Swimmer-v2 133.47±11.89 128.21 58.07 104.91 97.70 46.10 87.31
Walker2d-v2 4622.27±819.72 4511.20 4414.28 2111.87 3182.05 1420.07 4619.18
Reacher-v2 -3.97±0.48 -3.99 -3.99 -10.16 -6.53 -28.11 -3.98
InvertedPendulum-v2 1000.00±0.00 1000.00 990.33 959.72 541.52 1000.00 840.30
InvertedDoublePendulum-v2 9337.41±15.02 9224.01 9141.94 5872.40 5984.99 9313.54 9069.82

biases over different environments, we set β = 0.2 for
Swimmer-v2 and β = 0.95 for the remaining environments. We
average the K target action-values to reduce the approximation
error for an individual update, with K = 2. While a larger K
would result in a larger benefit with respect to the accumulation
of error, a lower change of target value can improve the stability,
especially for continuous action. For fair comparison, we set
other hyperparameters as the same as TD3 [16].

B. Evaluation

We compare our algorithm against other state-of-the-art
algorithms such as DDPG [29], PPO [38], TD3 [16], SAC [18]
and BCQ [15](the first two codes are from OpenAI’s baselines
repository and the last two are published or suggested by their
authors). In fact, BCQ is proposed for off-policy reinforcement
learning without exploration similar to imitation learning, with
a convex combination between minimum and maximum values
of two critics as target value. Here, we train the re-tuned version
of BCQ, also called BCQ, by replacing the target value of TD3
with the combination value mentioned above and using the
default weighting parameter published by the original BCQ’s
codes. We run each algorithm with one million time steps and
take a test every 5000 steps. In each test, the summation of all
rewards in each episode without exploration noise and discount
factor is viewed as a return, and every policy is evaluated with
the average return over 10 episodes for reducing the uncertainty
of environment. We eventually demonstrate the average return
and its standard deviation over 10 trails or seeds.

Figure 5 shows the learning curves with smoothing for
better visualization and Table II represents the average returns
of the last 5 evaluations. The results in Figure 5 and Table II
show that the average return of TADD is higher than all other
algorithms in Ant-v2, HalfCheetah-v2, Hopper-v2, Swimmer-
v2, Walker2d-v2, and achieves the maximum value in remaining
environments due to their score bounding. TADD promotes
largely compared to TD3 in Swimmer-v2, also happening in
BCQ, which implies that mitigating underestimation bias has a
huge impact on performance increasing. Moreover, we observe
that the standard deviation of TADD becomes smaller, perhaps
resulting from the introduction of an additional critic. Owing to
the total three critics, TADD can prevent the local optimums of
a single initialized neural network, further reducing the impact
of different network initialization and becoming more robust.
Overall, Figure 5 and Table II show that TADD outperforms
or matches all other algorithms in the final performance.

In addition to the final reward performance, we also evaluate
the computational cost with floating-point operations (FLOPs)
and running time. Essentially, our TADD adds two more same
fully connected networks into TD3, one from triplet critics and
the other from average Q-value. However, it does not bring too
many FLOPs due to the simplicity of these networks. Moreover,
we run TADD and TD3 in the same environment at the same
time, with Nvidia GeForce GTX 1080Ti. TADD needs only
one more hour to run, which is normal and also happens in the
comparison between TD3 and DDPG. In short, our proposed
TADD does not cost too much computation.

C. Ablation Studies

We perform ablation studies for evaluating the effect of
the weighting and averaging techniques. We provide results
for the intermediate state TDD. As shown in the second
column of Table II, the TDD with only a weighting technique
achieves better performance than TD3 and DDPG in most tasks.
After adding the averaging technique into TDD, i.e. TADD,
the performance is further improved, which implies that the
average Q-value can promote performance through variance
reduction. On the other hand, Figure 6 presents the results
under different weighting parameter β. As shown in Figure
6, while the significance of the weighting parameter varies
task to task, larger β corresponds to the better performance
in most tasks, indicating the underestimation bias is smaller
than the overestimation. However, the Swimmer-v2 is only
opposite in all tasks due to the larger underestimation bias
from double critics, which also explains why TD3 performs
worse than DDPG in Figure 5(d). Therefore, employing a
proper weight of β for reducing estimation bias plays a critical
role in improving performance.

VI. CONCLUSION

Estimation bias has been identified as a key challenge in
the value-based problem. In this work, we have shown, both
in theory and in practice, the existence of estimation bias,
and especially underestimation, in deep deterministic actor-
critic algorithms. To reduce this bias, we proposed a Triplet
Average Deep Deterministic policy gradient algorithm (TADD)
comprising a structure of triplet critics and an average Q-value
technique. The former is applied to balance overestimation
and underestimation bias and the latter taking into account the
connection between bias and per-update variance is used to ad-
dress high variance. We have demonstrated the effectiveness of
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(a) Ant-v2 (b) HalfCheetah-v2 (c) Hopper-v2 (d) Swimmer-v2

Fig. 6: Qualitative performances on the OpenAI gym continuous control tasks under different weighting parameter β =
0.95, 0.8, 0.5, 0.2. The darker lines show the median over the seeds. The shaded region represents a standard deviation of the
averaged evaluation.

TADD through theoretical analysis and extensive experiments.
More specifically, the results on numerous OpenAI continuous
control tasks have shown that our algorithm achieves superior
performance over the other state-of-the-art methods.
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