211 research outputs found

    Cascading Four Round LRW1 is Beyond Birthday Bound Secure

    Get PDF
    In CRYPTO’02, Liskov et al. introduced the concept of a tweakable block cipher, a novel symmetric key primitive with promising applications. They put forth two constructions for designing such tweakable block ciphers from conventional block ciphers: LRW1 and LRW2. While subsequent efforts extended LRW2 to achieve security beyond the birthday bound (e.g., cascaded LRW2 in CRYPTO’12 by Landecker et al.), the extension of LRW1 remained unexplored until Bao et al.’s work in EUROCRYPT’20 that considered cascaded LRW1, a one-round extension of LRW1 - entailing masking the LRW1 output with the given tweak and re-encrypting it with the same block cipher. They showed that CLRW1 offers security up to 22n/3 queries. However, this result was challenged by Khairallah’s recent birthday bound distinguishing attack on cascaded LRW1, effectively refuting the security claim of Bao et al. Consequently, a pertinent research question emerges: How many rounds of cascaded LRW1 are required to obtain security beyond the birthday bound? This paper addresses this question by establishing that cascading LRW1 for four rounds suffices to ensure security beyond the birthday bound. Specifically, we demonstrate that 4 rounds of CLRW1 guarantees security for up to 23n/4 queries. Our security analysis is based from recent advancements in the mirror theory technique for tweakable random permutations, operating within the framework of the Expectation Method

    Cascading Four Round LRW1 is Beyond Birthday Bound Secure

    Get PDF
    In CRYPTO\u2702, Liskov et al. have introduced a new symmetric key primitive called tweakable block cipher. They have proposed two constructions of designing a tweakable block cipher from block ciphers. The first proposed construction is called LRW1\mathsf{LRW1} and the second proposed construction is called LRW2\mathsf{LRW2}. Although, LRW2\mathsf{LRW2} has been extended in later works to provide beyond birthday bound security (e.g., cascaded LRW2\mathsf{LRW2} in CRYPTO\u2712 by Landecker et al.), but extension of the LRW1\mathsf{LRW1} has received no attention until the work of Bao et al. in EUROCRYPT\u2720, where the authors have shown that one round extension of LRW1\mathsf{LRW1}, i.e., masking the output of LRW1\mathsf{LRW1} with the given tweak and then re-encrypting it with the same block cipher, gives security up to 22n/32^{2n/3} queries. Recently, Khairallah has shown a birthday bound distinguishing attack on the construction and hence invalidated the security claim of Bao et al. This has led to the open research question, that {\em how many round are required for cascading LRW1\mathsf{LRW1} to achieve beyond birthday bound security ?} In this paper, we have shown that cascading LRW1\mathsf{LRW1} up to four rounds is sufficient for ensuring beyond the birthday bound security. In particular, we have shown that CLRW14\mathsf{CLRW1}^4 provides security up to 23n/42^{3n/4} queries. Security analysis of our construction is based on the recent development of the mirror theory technique for tweakable random permutations under the framework of the Expectation Method

    CTET+: A Beyond-Birthday-Bound Secure Tweakable Enciphering Scheme Using a Single Pseudorandom Permutation

    Get PDF
    International audienceIn this work, we propose a construction of 2-round tweakable substitution permutation networks using a single secret S-box. This construction is based on non-linear permutation layers using independent round keys, and achieves security beyond the birthday bound in the random permutation model. When instantiated with an n-bit block cipher with ωn-bit keys, the resulting tweakable block cipher, dubbed CTET+, can be viewed as a tweakable enciphering scheme that encrypts ωκ-bit messages for any integer ω ≥ 2 using 5n + κ-bit keys and n-bit tweaks, providing 2n/3-bit security. Compared to the 2-round non-linear SPN analyzed in [CDK+18], we both minimize it by requiring a single permutation, and weaken the requirements on the middle linear layer, allowing better performance. As a result, CTET+ becomes the first tweakable enciphering scheme that provides beyond-birthday-bound security using a single permutation, while its efficiency is still comparable to existing schemes including AES-XTS, EME, XCB and TET. Furthermore, we propose a new tweakable enciphering scheme, dubbed AES6-CTET+, which is an actual instantiation of CTET+ using a reduced round AES block cipher as the underlying secret S-box. Extensive cryptanalysis of this algorithm allows us to claim 127 bits of security.Such tweakable enciphering schemes with huge block sizes become desirable in the context of disk encryption, since processing a whole sector as a single block significantly worsens the granularity for attackers when compared to, for example, AES-XTS, which treats every 16-byte block on the disk independently. Besides, as a huge amount of data is being stored and encrypted at rest under many different keys in clouds, beyond-birthday-bound security will most likely become necessary in the short term

    Counter-in-Tweak: Authenticated Encryption Modes for Tweakable Block Ciphers

    Get PDF
    We propose the Synthetic Counter-in-Tweak (SCT) mode, which turns a tweakable block cipher into a nonce-based authenticated encryption scheme (with associated data). The SCT mode combines in a SIV-like manner a Wegman-Carter MAC inspired from PMAC for the authentication part and a new counter-like mode for the encryption part, with the unusual property that the counter is applied on the tweak input of the underlying tweakable block cipher rather than on the plaintext input. Unlike many previous authenticated encryption modes, SCT enjoys provable security beyond the birthday bound (and even up to roughly 2n2^n tweakable block cipher calls, where nn is the block length, when the tweak length is sufficiently large) in the nonce-respecting scenario where nonces are never repeated. In addition, SCT ensures security up to the birthday bound even when nonces are reused, in the strong nonce-misuse resistance sense (MRAE) of Rogaway and Shrimpton (EUROCRYPT 2006). To the best of our knowledge, this is the first authenticated encryption mode that provides at the same time close-to-optimal security in the nonce-respecting scenario and birthday-bound security for the nonce-misuse scenario. While two passes are necessary to achieve MRAE-security, our mode enjoys a number of desirable features: it is simple, parallelizable, it requires the encryption direction only, it is particularly efficient for small messages compared to other nonce-misuse resistant schemes (no precomputation is required) and it allows incremental update of associated data

    Provable Security of (Tweakable) Block Ciphers Based on Substitution-Permutation Networks

    Get PDF
    Substitution-Permutation Networks (SPNs) refer to a family of constructions which build a wn-bit block cipher from n-bit public permutations (often called S-boxes), which alternate keyless and “local” substitution steps utilizing such S-boxes, with keyed and “global” permu- tation steps which are non-cryptographic. Many widely deployed block ciphers are constructed based on the SPNs, but there are essentially no provable-security results about SPNs. In this work, we initiate a comprehensive study of the provable security of SPNs as (possibly tweakable) wn-bit block ciphers, when the underlying n-bit permutation is modeled as a public random permutation. When the permutation step is linear (which is the case for most existing designs), we show that 3 SPN rounds are necessary and sufficient for security. On the other hand, even 1-round SPNs can be secure when non-linearity is allowed. Moreover, 2-round non-linear SPNs can achieve “beyond- birthday” (up to 2 2n/3 adversarial queries) security, and, as the number of non-linear rounds increases, our bounds are meaningful for the number of queries approaching 2 n . Finally, our non-linear SPNs can be made tweakable by incorporating the tweak into the permutation layer, and provide good multi-user security. As an application, our construction can turn two public n-bit permuta- tions (or fixed-key block ciphers) into a tweakable block cipher working on wn-bit inputs, 6n-bit key and an n-bit tweak (for any w ≥ 2); the tweakable block cipher provides security up to 2 2n/3 adversarial queries in the random permutation model, while only requiring w calls to each permutation, and 3w field multiplications for each wn-bit input

    A Note on the CLRW2 Tweakable Block Cipher Construction

    Get PDF
    In this note, we describe an error in the proof for CLRW2 given by Landecker et al. in their paper at CRYPTO 2012 on the beyond-birthday-bound security for tweakable block ciphers. We are able to resolve the issue, give a new bound for the security of CLRW2, and identify a potential limitation of this proof technique when looking to extend the scheme to provide asymptotic security

    Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers with Linear Tweak and Key Mixing

    Get PDF
    The iterated Even-Mansour construction defines a block cipher from a tuple of public nn-bit permutations (P1,,Pr)(P_1,\ldots,P_r) by alternatively xoring some nn-bit round key kik_i, i=0,,ri=0,\ldots,r, and applying permutation PiP_i to the state. The \emph{tweakable} Even-Mansour construction generalizes the conventional Even-Mansour construction by replacing the nn-bit round keys by nn-bit strings derived from a master key \emph{and a tweak}, thereby defining a tweakable block cipher. Constructions of this type have been previously analyzed, but they were either secure only up to the birthday bound, or they used a nonlinear mixing function of the key and the tweak (typically, multiplication of the key and the tweak seen as elements of some finite field) which might be costly to implement. In this paper, we tackle the question of whether it is possible to achieve beyond-birthday-bound security for such a construction by using only linear operations for mixing the key and the tweak into the state. We answer positively, describing a 4-round construction with a 2n2n-bit master key and an nn-bit tweak which is provably secure in the Random Permutation Model up to roughly 22n/32^{2n/3} adversarial queries

    Tweaking a block cipher: multi-user beyond-birthday-bound security in the standard model

    Get PDF
    In this paper, we present a generic construction to create a secure tweakable block cipher from a secure block cipher. Our construction is very natural, requiring four calls to the underlying block cipher for each call of the tweakable block cipher. Moreover, it is provably secure in the standard model while keeping the security degradation minimal in the multi-user setting. In more details, if the underlying blockcipher E uses n-bit blocks and 2n-bit keys, then our construction is proven secure against multi-user adversaries using up to roughly 2n time and queries as long as E is a secure block cipher

    Tweakable Blockciphers for Efficient Authenticated Encryptions with Beyond the Birthday-Bound Security

    Get PDF
    Modular design via a tweakable blockcipher (TBC) offers efficient authenticated encryption (AE) schemes (with associated data) that call a blockcipher once for each data block (of associated data or a plaintext). However, the existing efficient blockcipher-based TBCs are secure up to the birthday bound, where the underlying keyed blockcipher is a secure strong pseudorandom permutation. Existing blockcipher-based AE schemes with beyond-birthday-bound (BBB) security are not efficient, that is, a blockcipher is called twice or more for each data block. In this paper, we present a TBC, XKX, that offers efficient blockcipher-based AE schemes with BBB security, by combining with efficient TBC-based AE schemes such as ΘCB3 an
    corecore