110 research outputs found

    Cut-Matching Games on Directed Graphs

    Full text link
    We give O(log^2 n)-approximation algorithm based on the cut-matching framework of [10, 13, 14] for computing the sparsest cut on directed graphs. Our algorithm uses only O(log^2 n) single commodity max-flow computations and thus breaks the multicommodity-flow barrier for computing the sparsest cut on directed graph

    Beyond pairwise clustering

    Get PDF
    We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms

    A Linear-time Algorithm for Sparsification of Unweighted Graphs

    Full text link
    Given an undirected graph GG and an error parameter ϵ>0\epsilon > 0, the {\em graph sparsification} problem requires sampling edges in GG and giving the sampled edges appropriate weights to obtain a sparse graph GϵG_{\epsilon} with the following property: the weight of every cut in GϵG_{\epsilon} is within a factor of (1±ϵ)(1\pm \epsilon) of the weight of the corresponding cut in GG. If GG is unweighted, an O(mlogn)O(m\log n)-time algorithm for constructing GϵG_{\epsilon} with O(nlogn/ϵ2)O(n\log n/\epsilon^2) edges in expectation, and an O(m)O(m)-time algorithm for constructing GϵG_{\epsilon} with O(nlog2n/ϵ2)O(n\log^2 n/\epsilon^2) edges in expectation have recently been developed (Hariharan-Panigrahi, 2010). In this paper, we improve these results by giving an O(m)O(m)-time algorithm for constructing GϵG_{\epsilon} with O(nlogn/ϵ2)O(n\log n/\epsilon^2) edges in expectation, for unweighted graphs. Our algorithm is optimal in terms of its time complexity; further, no efficient algorithm is known for constructing a sparser GϵG_{\epsilon}. Our algorithm is Monte-Carlo, i.e. it produces the correct output with high probability, as are all efficient graph sparsification algorithms

    Quantifying the Extent of Lateral Gene Transfer Required to Avert a `Genome of Eden'

    Get PDF
    The complex pattern of presence and absence of many genes across different species provides tantalising clues as to how genes evolved through the processes of gene genesis, gene loss and lateral gene transfer (LGT). The extent of LGT, particularly in prokaryotes, and its implications for creating a `network of life' rather than a `tree of life' is controversial. In this paper, we formally model the problem of quantifying LGT, and provide exact mathematical bounds, and new computational results. In particular, we investigate the computational complexity of quantifying the extent of LGT under the simple models of gene genesis, loss and transfer on which a recent heuristic analysis of biological data relied. Our approach takes advantage of a relationship between LGT optimization and graph-theoretical concepts such as tree width and network flow
    corecore