20 research outputs found

    One-shot rates for entanglement manipulation under non-entangling maps

    Get PDF
    We obtain expressions for the optimal rates of one- shot entanglement manipulation under operations which generate a negligible amount of entanglement. As the optimal rates for entanglement distillation and dilution in this paradigm, we obtain the max- and min-relative entropies of entanglement, the two logarithmic robustnesses of entanglement, and smoothed versions thereof. This gives a new operational meaning to these entanglement measures. Moreover, by considering the limit of many identical copies of the shared entangled state, we partially recover the recently found reversibility of entanglement manipu- lation under the class of operations which asymptotically do not generate entanglement.Comment: 7 pages; no figure

    Communicating over adversarial quantum channels using quantum list codes

    Get PDF
    We study quantum communication in the presence of adversarial noise. In this setting, communicating with perfect fidelity requires using a quantum code of bounded minimum distance, for which the best known rates are given by the quantum Gilbert-Varshamov (QGV) bound. By asking only for arbitrarily high fidelity and allowing the sender and reciever to use a secret key with length logarithmic in the number of qubits sent, we achieve a dramatic improvement over the QGV rates. In fact, we find protocols that achieve arbitrarily high fidelity at noise levels for which perfect fidelity is impossible. To achieve such communication rates, we introduce fully quantum list codes, which may be of independent interest.Comment: 6 pages. Discussion expanded and more details provided in proofs. Far less unclear than previous versio

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page

    General theory of environment-assisted entanglement distillation

    Full text link
    We evaluate the one-shot entanglement of assistance for an arbitrary bipartite state. This yields another interesting result, namely a characterization of the one-shot distillable entanglement of a bipartite pure state. This result is shown to be stronger than that obtained by specializing the one-shot hashing bound to pure states. Finally, we show how the one-shot result yields the operational interpretation of the asymptotic entanglement of assistance proved in [Smolin et al., Phys. Rev. A 72, 052317 (2005)].Comment: 23 pages, one column, final published versio

    The apex of the family tree of protocols: Optimal rates and resource inequalities

    Full text link
    We establish bounds on the maximum entanglement gain and minimum quantum communication cost of the Fully Quantum Slepian-Wolf protocol in the one-shot regime, which is considered to be at the apex of the existing family tree in Quantum Information Theory. These quantities, which are expressed in terms of smooth min- and max-entropies, reduce to the known rates of quantum communication cost and entanglement gain in the asymptotic i.i.d. scenario. We also provide an explicit proof of the optimality of these asymptotic rates. We introduce a resource inequality for the one-shot FQSW protocol, which in conjunction with our results, yields achievable one-shot rates of its children protocols. In particular, it yields bounds on the one-shot quantum capacity of a noisy channel in terms of a single entropic quantity, unlike previously bounds. We also obtain an explicit expression for the achievable rate for one-shot state redistribution.Comment: 31 pages, 2 figures. Published versio

    Applications of position-based coding to classical communication over quantum channels

    Get PDF
    Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.Comment: v4: 44 pages, v4 includes a simpler proof for an upper bound on one-shot entanglement-assisted capacity, also found recently and independently in arXiv:1804.0964

    Communicating Over Adversarial Quantum Channels Using Quantum List Codes

    Full text link
    corecore