8 research outputs found

    Better lossless condensers through derandomized curve samplers

    Get PDF
    Lossless condensers are unbalanced expander graphs, with expansion close to optimal. Equivalently, they may be viewed as functions that use a short random seed to map a source on n bits to a source on many fewer bits while preserving all of the min-entropy. It is known how to build lossless condensers when the graphs are slightly unbalanced in the work of M. Capalbo et al. (2002). The highly unbalanced case is also important but the only known construction does not condense the source well. We give explicit constructions of lossless condensers with condensing close to optimal, and using near-optimal seed length. Our main technical contribution is a randomness-efficient method for sampling FD (where F is a field) with low-degree curves. This problem was addressed before in the works of E. Ben-Sasson et al. (2003) and D. Moshkovitz and R. Raz (2006) but the solutions apply only to degree one curves, i.e., lines. Our technique is new and elegant. We use sub-sampling and obtain our curve samplers by composing a sequence of low-degree manifolds, starting with high-dimension, low-degree manifolds and proceeding through lower and lower dimension manifolds with (moderately) growing degrees, until we finish with dimension-one, low-degree manifolds, i.e., curves. The technique may be of independent interest

    Randomness-Efficient Curve Samplers

    Get PDF
    Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions. The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(logN + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TSU06] they obtained curve samplers with near-optimal randomness complexity. We present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor), sampling curves of degree (m log_q (1/δ))^(O(1)) in F^m_q. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes

    An algorithmic Friedman-Pippenger theorem on tree embeddings and applications

    Get PDF
    An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996)

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore