9,915 research outputs found

    Transferring structural knowledge across cognitive maps in humans and models

    Get PDF
    Relations between task elements often follow hidden underlying structural forms such as periodicities or hierarchies, whose inferences fosters performance. However, transferring structural knowledge to novel environments requires flexible representations that are generalizable over particularities of the current environment, such as its stimuli and size. We suggest that humans represent structural forms as abstract basis sets and that in novel tasks, the structural form is inferred and the relevant basis set is transferred. Using a computational model, we show that such representation allows inference of the underlying structural form, important task states, effective behavioural policies and the existence of unobserved state-trajectories. In two experiments, participants learned three abstract graphs during two successive days. We tested how structural knowledge acquired on Day-1 affected Day-2 performance. In line with our model, participants who had a correct structural prior were able to infer the existence of unobserved state-trajectories and appropriate behavioural policies

    DAC: The Double Actor-Critic Architecture for Learning Options

    Full text link
    We reformulate the option framework as two parallel augmented MDPs. Under this novel formulation, all policy optimization algorithms can be used off the shelf to learn intra-option policies, option termination conditions, and a master policy over options. We apply an actor-critic algorithm on each augmented MDP, yielding the Double Actor-Critic (DAC) architecture. Furthermore, we show that, when state-value functions are used as critics, one critic can be expressed in terms of the other, and hence only one critic is necessary. We conduct an empirical study on challenging robot simulation tasks. In a transfer learning setting, DAC outperforms both its hierarchy-free counterpart and previous gradient-based option learning algorithms.Comment: NeurIPS 201

    A Biologically-Inspired Dual Stream World Model

    Full text link
    The medial temporal lobe (MTL), a brain region containing the hippocampus and nearby areas, is hypothesized to be an experience-construction system in mammals, supporting both recall and imagination of temporally-extended sequences of events. Such capabilities are also core to many recently proposed ``world models" in the field of AI research. Taking inspiration from this connection, we propose a novel variant, the Dual Stream World Model (DSWM), which learns from high-dimensional observations and dissociates them into context and content streams. DSWM can reliably generate imagined trajectories in novel 2D environments after only a single exposure, outperforming a standard world model. DSWM also learns latent representations which bear a strong resemblance to place cells found in the hippocampus. We show that this representation is useful as a reinforcement learning basis function, and that the generative model can be used to aid the policy learning process using Dyna-like updates
    • …
    corecore