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Transferring structural knowledge across cognitive
maps in humans and models

Shirley Mark 180 Rani Moran® 2, Thomas Parr!, Steve W. Kennerley 3& Timothy E. J. Behrens®?

Relations between task elements often follow hidden underlying structural forms such as
periodicities or hierarchies, whose inferences fosters performance. However, transferring
structural knowledge to novel environments requires flexible representations that are
generalizable over particularities of the current environment, such as its stimuli and size.
We suggest that humans represent structural forms as abstract basis sets and that in novel
tasks, the structural form is inferred and the relevant basis set is transferred. Using a com-
putational model, we show that such representation allows inference of the underlying
structural form, important task states, effective behavioural policies and the existence of
unobserved state-trajectories. In two experiments, participants learned three abstract graphs
during two successive days. We tested how structural knowledge acquired on Day-1 affected
Day-2 performance. In line with our model, participants who had a correct structural
prior were able to infer the existence of unobserved state-trajectories and appropriate
behavioural policies.
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ecisions in a new environment require the understanding

of what are the relevant components in this environment

and how they are related to each other. In the cognitive
literature, the representation that holds such information is termed
a ‘cognitive map’!. Equipped with a ‘cognitive map’, an animal can
predict the consequence of events and actions to inform its deci-
sions. Associative learning results in a cognitive map in which the
relations between the components are encoded using the associa-
tions between the representations of the components themselves??>,
this type of representation does not incorporate prior knowledge
and cannot be generalized. In novel environments, while learning a
new cognitive map, it should be beneficial to exploit relevant
information that was acquired in the past. What information is
relevant to transfer and how it is represented remains an open
question.

One possibility is that, while sensory information may differ
radically between different situations, the brain may take advantage
of previously learnt structural knowledge or schemas*-. Relation-
ships between elements in different environments often follow ste-
reotypical patterns’~2. Social networks, for example, are organized in
communities'?. The day-night cycle, the cycle over the seasons and
the appearance of the moon in the sky all follow a periodic pattern.
Hierarchies are also abundant; for example, a family, management
chain in a workplace or concept organization!!. Representing such
structures confers theoretical advantages in learning when encoun-
tering a new environment. Inferring the relevant structure enables
the use of policies that are beneficial in environments with a par-
ticular underlying structure. Further, relationships that have never
been observed can be inferred because the structure of the problem
is familiar!2-15.

One structure which is pervasive in life and which we know
facilitates such inferences is the 2-dimensional topology of space.
This structure can be used, for example, to infer the correct
trajectory to a goal even when the intermediate locations have
never been experienced (as with refs. 1617), If such structural
knowledge can be transferred from one set of sensory events to
another, it should be represented in a way that is disentangled
from the sensory stimuli and the particularities of the current
task. We can consider the setting in which all tasks are repre-
sented as graphs, whereby each node on the graph is a particular
sensory stimulus that is currently experienced, for example,
observing the shape of the moon. Then, an edge between two
sensory stimuli implies a transition between sensory states; a
round moon will be followed by an elliptic moon. These graphs
can have different structural forms!®1°. The lunar graph, the
seasonal graph and the day-night graph will all be circular; a
workplace graph will be hierarchical; the social network graph
will have a community structure; and the spatial environment will
have a transition structure that respects the translational and
rotational invariances of 2D space. Can humans extract such
abstract information and use it to facilitate new inferences? If so,
how can this knowledge be represented efficiently by the brain?

Here we show that humans extract and transfer structural
regularities in graph-learning tasks. When observing a new sen-
sory environment with a familiar structural form, they infer the
existence of paths they have never seen that conform to the
structural form and make novel choices that are likely beneficial.
In order to understand these effects, we compared different
computational models. Cognitive maps can be represented using
associative learning®3, in such a representation, relationships
between the elements in the environment are encoded by the
associations between the representations of the elements them-
selves. Therefore, the knowledge of the structure of the envir-
onment is conjugated with the stimulus representations and there
is no abstraction. Using the Successor Representation (SR) as an
associative model for a cognitive map?3, we show that such a

model cannot account for the ability of humans to infer paths that
have never been observed. Smoothing of such a representation
allows inference of paths that have not yet been observed?, but
such smoothing does not depend on prior knowledge. However,
our participants’ success on the task depends on the structure of
the graph they have experienced a day before, which therefore
implies that they do exploit prior structural knowledge.

To account for the exploitation of prior structural knowledge
we suggest a computational mechanism for representing, infer-
ring and transferring this abstract structural knowledge. Such a
representation should allow inference of the currently relevant
structural form and the transfer of relevant knowledge to new
sensory environments®!8. Structural abstraction is inherent to
common computational frameworks such as Hidden Markov
Models (HMMs). However, for flexible generalisation to new
environments, the representation should highlight key statistical
properties of the graph structure but suppress environment-
specific particularities. We show that this can be achieved by
representing structural knowledge in the form of basis sets (a set
of vectors that can be used for function approximation), as has
been proposed in reinforcement learning!3-20. This complements
generative modelling approaches that attempt to infer low-
dimensional latent states that explain high dimensional obser-
vations?!, and complies with the Bayesian Occam’s razor in
finding the simplest explanation for these??. To support our
suggestion, we conducted a second experiment. We show that
prior over hidden structure changes participants’ strategy for
learning a new graph, to match previously experienced graph
statistics. Moreover, participants adjust their behavioural policy
according to the hidden underlying structure.

Results

Task design. We created a task in which simulated agents and
humans learn abstract graphs (Fig. 1). The graphs belong to two
different structural forms. Each structural form is controlled by a
different connectivity rule (Fig. 1a). We focused on two structural
forms, a graph with a transition matrix that obeys translational
and rotational invariant symmetry (Hexagonal graph) and graphs
that have underlying community structure (Fig. 1a). Each node in
the graph corresponds to a sensory stimulus (a picture—which is
a state of the task). Each edge implies that these sensory stimuli
can appear one after the other (direct bidirectional transitions
between the states are allowed?324). Using this task, we asked
whether our agents and participants can infer the structural form
of the underlying graph and how the structural knowledge can be
exploited to better accomplish the task. Participants performed
the task during 2 successive days. We asked whether participants
can infer the underlying structural form encountered during the
first day and transfer and exploit this knowledge during the
second day. On the first day, participants learned two different
graphs, with different pictures set but same structure. On the
second day participants learned a third graph with a new pictures
set (one group learned a graph with the same underlying struc-
ture and the other group learned a graph with a different struc-
ture, Fig. 1).

The agents and participants learned the graphs by observing
pairs of stimuli that are connected by an edge. Each block of the
task begins with a learning phase. Following the learning phase,
we examined agents’ and participants’ knowledge of the graph. To
examine participants’ knowledge of the graph, we performed four
separate tests within each block of the task (Fig. 1b): (1) We asked
participants to report which of two pictures sequences could be
extended with a target picture. (2) Participants reported whether
a target picture could appear between two other pictures in a
sequence. (3) Participants navigated on the graph; starting from a
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Fig. 1 Transfer of structural knowledge: graph structures and experimental design. a Experimental design. Agents and participants learned graphs with
underlying Hexagonal (left) or Community (right) structure. Each grey dot is a node on a graph and corresponds to a picture that was viewed by the

participant (for example, a picture of a bee). The lines are edges between nodes. Pictures of nodes that are connected by an edge can appear one after the
other. The degree of all nodes in both graphs is six (a connecting node connects to one fewer node within a community to keep the degree equal to six).
Participants learned the graphs during two successive days. In both experiments, participants were segregated into two groups. Participants in one group
learned graphs with the same underlying structure during both days while the other groups learned graphs with different underlying structures during the
different days. Two graphs were learnt during day 1 and additional graph on day 2. b One block of the task. Participants never observed the underlying
graph structure but had to learn (or infer) it by performing a task. In each block, participants learned the associations between pairs of pictures, where each
pair of pictures are emitted by neighbouring states on the graph. Following the learning phase, participants had to answer different types of questions: (1)
report which of the two picture sequences could be extended with a target picture, (2) indicate whether the picture in the middle (sun) can appear between
the two other pictures in a sequence (left and right, respectively, under ‘Testing associations knowledge’) and (3) they navigated on the graph: starting
from a certain picture, for example, the building, participants had to choose (or skip) between two pictures that are connected to the current picture (the
building) on the graph, for example, basket and boots (empty squares above the arrows indicate minimum steps to the target). The chosen picture then
replaces the ‘starting picture’. Participants repeated these steps until they reached the target picture (for instance, the running man). (4) Which picture is
closer to the target picture (the bag), the ice-cream or the basket? (Distance estimation). Question type three was excluded from day 2 on experiment 1.

source picture, participants repeatedly chose between two of the
picture’s neighbours until reaching the target, with the aim to do
so in the smallest number of steps. (4) Participants were asked to
report which of two pictures is closer to a target picture (without
feedback, see ‘Methods’ for further details).

We tested transfer of structural knowledge by conducting two
different experiments. In each experiment, we tested the effect of
transfer of a specific structural form; in the first experiment, we
have tested transfer of Hexagonal grid structure, while in the
second we have tested the transfer of community-structure
knowledge (see below for more details). In each experiment,
participants learned two graphs with a particular structural form
during the first day. The effect of prior structural knowledge was
then tested on the following day by examining participants’
learning of a third graph (Fig. 1). To test for transfer of structural
knowledge, in each experiment, we divided participants into two
different groups. One group was exposed to graphs with the same
structural form (but different pictures) on both days. The second
group was exposed to graphs with different structural forms (and
pictures) on each day (Fig. 1a). This design allows us to control
for all effects that are independent of the structure of the graphs;
since the task is independent of the structural form, and its
identity is not explicitly observed by the participants.

Associative representation. Learning such graphs and creating a
cognitive map can be accomplished using different types of
representations. One solution to such a problem is a conjunctive
representation of the stimuli and their relationships; the

relationships between the stimuli are encoded by the associations
between the representations of the stimuli themselves (Fig. 2).
An example of such representation is the SR3. Here, the repre-
sentation of each state (in our setup each stimulus defines a state)
encodes the probability to reach any other states in the future.
Using such a representation it is possible to determine whether
two stimuli are neighbouring nodes on a graph and even to
navigate on a graph.

Inferring and transferring graph structure. A different option
for learning a cognitive map is to represent the structure of the
graph and its stimuli using different, disentangled representations
(Fig. 2). We considered a HMM. The Markov assumption is that
each latent state depends directly only on the state at the previous
time step. In other words, the past is independent of the future
conditioned on the present. This dependency is captured by the
transition matrix, A. Each entry, Aij, in this matrix represents the
probability to move from state i to state j. A second matrix, the
emission matrix Bik, represents the probability that state i will
emit observation (particular stimulus) k. Together, both these
matrices describe the probability of a sequence of observations.
The HMM framework is promising because it maintains separate
representations of transitions and emissions and therefore can
easily generalise transition structures to new sensory stimuli
(Fig. 2). However, we consider two extensions to vanilla HMMs.

First, because transition matrices (A) of the same structural
form may not be identical (e.g. different number of nodes), we
need a flexible representation of transition structure. We
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approximate the transition structure using basis sets for structural
knowledge (Fig. 3b, ¢, d, see below and ‘Methods™ for further
details). Second, we propose a method for inferring, amongst
candidate basis sets, the one that best fits the current task. We
assume that each common structural form is represented by a basis
set and this basis set is known to the agent. The agent needs to infer
the underlying structural form and exploit the knowledge of the
basis set to estimate the transition matrix of the current task. Once
the structural form is inferred, the size of the graph should also be
inferred. The agent should then adjust the basis set according to the

Learning graphs
from observations

Abstract
representation
Associative
representation 1 2 3 4 5

(o)

‘9

>
\

Fig. 2 Associative and abstract representation of transition structure.
Learning underlying graph structure from observations of pictures. Graph
can be represented by learning the associations between the stimuli
(associative representation). Such representation is conjunctive, as the
relations between the stimuli are encoded using the associations between
the representation of the stimuli themselves. This type of representation
does not allow generalization and knowledge transfer. Representing the
graph using two separate matrices, the transition and emission matrices
allows generalization over graph structure.

inferred graph size and estimate the transition structure of the
current task (Fig. 3d, see ‘Methods’ for details).

The problem at hand can be formulated as a hierarchical
generative model of graphs?®. Each structural form, using the
basis set representation, can generate a particular transition
structure according to a vector of parameters () that defines the
particularities of the current graph, such as size. Together with
the emission matrix (B), the observations (O) can be generated
(Fig. 3a). The task for the agent is to infer the current structural
form (Sy), graph size and the emission matrix. The agent first uses
approximate Bayes (see ‘Methods’) to infer the structural form
and graph size:

p(8;,610) o< p(O16, $;)p(6]S,)p(S;) (1)
Where:

2(016.5,) = / p(O[B, 6,5,)p(B/6, S,)dB. @)

While doing so, the agent calculates the maximum likelihood
estimates of the emission matrices for each considered graph (see
‘Methods’). The emission matrix that corresponds to the inferred
structural form and graph size is then chosen to represent the
current task. Using this method, the agent was able to infer the
correct structural form (Supplementary Figs. 2 and 3) and graph
size (Fig. 6a and Supplementary Fig. 1). Following the estimation
of transition and emission matrices, the agent can estimate the
distances (number of links) between observations (see ‘Methods’).
Indeed, when asking the agent to report which of two pictures is
closer to the target picture, similarly to participants, the agent was
able to perform it correctly (Supplementary Fig. 1).

Basis sets definition. The problem at hand is representing
abstract structural knowledge. It was previously shown that
topology of a graph is well represented by eigenvectors of the
graph Laplacian?0. The graphs that we considered here are
symmetrical; therefore, the eigenvectors of the graph Laplacian
and the transition structure are the same. For basis representa-
tions of the hexagonal structures, we therefore, chose eigenvectors
of a hexagonal graph transition matrix (see ‘Methods’, Fig. 3b).
These eigenvectors have previously been shown to resemble
Entorhinal cortex grid cells»26. Because the community-structure
graph is not translationally invariant, it can be more compactly
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Fig. 3 Inferring graph structure rather than learning it using a basis sets representation for structural knowledge. a \We present a generative model for
graphs. Each graph belongs to a structural form (Sg). Given a structural form, graph size () is sampled from prior distribution (p(|Sp) and the transition
matrix is approximated. Given a transition matrix (Aff, that is determined by the form and the dimensions) an emission matrix (B) is sampled. From these
two matrices, the sequence of observations (O) can be generated. b Basis sets for Hexagonal grid, few examples. ¢ Basis sets for a community structure.
Basis sets can allow direct inference of important graph states without the need of further computation. In a graph with underlying community structure,
the connecting nodes (blue circles) are important; knowing them allows fast transitions between communities. A basis set that contains explicit connecting
nodes assignment vectors allows the direct inference of their identity by learning the emission matrix. d The transition matrices can be approximated using
Basis sets for structural knowledge. Upper panels: correct and approximated transition structure for Hexagonal grids with 36 nodes. Lower panels: real and
approximated transition matrices for a graph with underlying community structure (35 nodes).
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Fig. 4 Inference of unobserved links (Hexagonal graph). a Inferring the existence of unobserved edges (links). Left—the task: The agents had to indicate
which of two nodes (pictures) has smaller number of links to the target. With only observed links, the number of links to the target was identical. Right—
red edges indicates missing links on the graph. For example, the two nodes that are marked with light blue have the same number of observed links to the
target node (marked with dark blue circle), while the number of links that connect these two nodes to the target is different on the complete graph. b When
learning from pairs that were sampled randomly (not in succession) while some of the links (pairs) were never observed, simple associative models as
learning transition matrix (DA) or simple SR (SR-online: learning using TD-SR#4, SR-A: calculating SR from the learnt transition matrix) could not infer the
existence of the unobserved links and solve the task (it in fact solves it worse than chance). Agents that use a filtered SR representation (SRreg) could
answer these questions better than chance. Shadows are the standard errors of the mean (SEM), the centre is the mean. ¢ When learning from pairs that
were sampled randomly (not in succession) while some of the links (pairs) were never observed), the basis set agent, that transfers abstract structural
knowledge, was able to infer the structural form (Supplementary Fig. 2) and graph size correctly. d Further, the agent was able to infer the existence of links
that were never observed and determined correctly, which of two pictures is closer to a target picture, according to the complete graph (green). The agent
could do so even though the number of observed links between the two pictures and the target was identical (p(cor) corresponds to the average fraction of
correct answers out of 40 questions in each block). When the agent was forced to infer a community structure (red), it answered these questions worse

than chance. Shadows are the standard errors of the mean, the centre is the mean.

represented using bases that take two distinct forms—a set of
bases for community membership and a set for connecting nodes,
where ‘connecting nodes’ refers to nodes that connect two com-
munities (Fig. 3c). As we will show, this has the additional benefit
of rapidly inferring connecting nodes, which leads to behavioural
advantages. This basis set resembles the transition structure
eigenvectors of such graphs but allows higher flexibility in
representing communities that lie on different, higher level,
structures (such as rings, grids etc., see Supplementary Notes 1 &
3 for further discussion).

Inferring unobserved trajectories. Determining whether two
pictures are neighbours on a graph, or navigating on a graph, can
be achieved by both types of models—associative learning and
HMM—as these tasks require knowledge of the associations
between the pictures. However, the aim of this work is to examine
the ability of models and humans to represent and transfer
abstract structural knowledge. Here, we show that abstract
structure of the task can be exploited for inference of unobserved
edges and this abstract structural knowledge can be transferred
between graphs.

To test inference of unobserved edges, we tested the models
(and later the human participants) on a more difficult problem.
Here, instead of a random walk, the models learn the graph by

pseudo-random sampling of pairs of adjacent states. This is a
harder problem than inferring the graph from random walks, as
loop-closures (when the participant sees an entire trajectory,
starting from a certain state and returning to the same state) are
far less frequent so the number of possible graphs consistent
with the observations remains high for longer. However, this
allowed us to perform a key manipulation. We could selectively
omit key edges in the graph (red edges Fig. 4a) without changing
the local sequence statistics (because there were no sequences,
only pseudo-random presentations of adjacent pairs). We could
then ask if the agents (and later humans) could infer the
existence of these omitted edges. To test whether the models
(and later humans) could infer unobserved links, we asked
questions of the following form: Which of two observations is
closer to the target state? In each case, the two observations were
the same distance to the target, given the observed edges, but
one of the observations would be closer if the model (or human)
had inferred the existence of the omitted edges.

Simple associative models, such as learning the transition
matrix between the pictures themselves or learning SR, cannot
solve such a problem (Fig. 4b). Following Stachenfeld et al.2, we
spectrally filtered the SR that is currently being learnt using its
own eigendecomposition; we reconstructed the SR using the
seven most informative eigenvectors only. Such filtration smooths
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over the unobserved edges, which then allows the agent to answer
such questions better than chance without the need of knowledge
transfer (Fig. 4b, p < 0.001 one-tailed ¢ test). Our basis sets model
was able to infer the correct structural form (Supplementary
Fig. 1) and graph size (Fig. 4c), it exploits this knowledge to infer
the unobserved edges better than chance and answer the
questions above correctly (Fig. 4d, p<0.001 one-tailed ¢ test,
see also Supplementary Fig. 1). Hence, we can conclude that basis
sets, as a compressed representation of transition structures, allow
estimation and inference of the currently relevant transition
structure and therefore enable the prediction of edges that were
never observed.

We then wanted to check whether humans solve such problems
using transfer of abstract structural knowledge or whether they
exploit a smoothed associative representation. If participants can
solve the task without the need of prior knowledge it will imply that
associative learning is enough, while if their performance depends
on prior knowledge, we can conclude that humans do represent and
transfer abstract structural knowledge. To test whether humans
infer the existence of unobserved edges by using clever smoothing
of noisy representation or whether an abstract knowledge is being
transferred, we designed the following two experiments.

Humans infer unobserved trajectories. Do humans use prior
structural knowledge of the underlying graph structure to infer
the existence of transitions that were never observed? We per-
formed graph-learning experiments where participants learned
three large graphs (36 nodes with degree of 6, Fig. 1a). We tested
whether participants can infer (or learn) the underlying graph
structure and apply this knowledge to a new graph with new
stimuli. Participants were segregated into two groups. They per-
formed the task on 2 successive days (Fig. la). During the first
day, one group learned two graphs with an underlying hexagonal
structure while the second group learned two graphs with an
underlying community structure. On that day, the graphs were
learnt by observing a sequence of pictures that are taken from a
random walk on the graphs.

Following the analogical reasoning theory in psychology®, we
hypothesised that the experience during the first day shaped the
prior expectations over the underlying structural forms during
the second day, as participants associated the experienced graph
statistics with our task. Participants who learned hexagonal
graphs during the first day should expect a hexagonal graph on
the second day, while participants who previously learned graphs
with underlying community structure should expect to learn
again a graph with a community structure. We therefore asked
whether participants can infer the underlying structural form
during the first day and then use it as prior knowledge during the
second day. Notably, if they do, they will be able to infer the
existence of transitions they have never observed (as in the
model). Therefore, as with the model described above, both
groups of participants learned hexagonal graph on the second day
by observing pairs of adjacent pictures. As with the model, pairs
were sampled pseudo-randomly (i.e. neighbouring pairs were not
sampled in succession) and many pairs were omitted. That is,
many transitions were never explicitly observed by the partici-
pants (depicted in Fig. 4a red lines). We aimed to test whether
participants could use structural knowledge from the first day to
infer the existence of these unobserved transitions.

We used the exact same testing procedures as with the models
above to examine participants’ ability to infer the existence of a
link that was never observed explicitly; participants had to
indicate which of two pictures is closer to a target picture; no
feedback was given for this type of questions (more than 200
questions for each participant). As with the models, the two

pictures were the same distance to the target, given the observed
links, but one was closer if the existence of the missing link was
inferred. Only participants who were able to complete ‘missing
links’ using knowledge of the underlying graph structure could
answer these questions correctly. Indeed, participants who had
experienced the hexagonal structure on different graphs the
previous day, performed significantly better than control
participants who had experienced graphs with underlying
community structure (Fig. 5, left: all questions, right: ‘missing
links’ questions only. <Phex(cor)> = 0.54, <Pcl(cor)>=0.5, t=
2.29, p-value = 0.016 for inference questions, <Phex(cor)> = 0.56,
<Pcl(cor)> =0.52, t=2.54, p-value =0.0068 for all questions,
df = 58, one-tailed ¢ test, the results are significant for two-tailed
test as well). These results indicate that, similarly to our basis sets
model, participants extract sophisticated structural knowledge of
the problem that generalises across different sensory realisations.
They were able to transfer knowledge from one day to the other
and use this knowledge to guide their decisions and infer
unobserved trajectories. This effect cannot be driven by non-
inferential approximations of graph distances, such as the
smoothed SR model®3, as all such measures consider each graph
independently and are therefore invariant to the structural form
of the previous day’s graph (with different stimuli).

Notably, this effect is driven by a subset of participants (Fig. 5).
This subset performs the inference extremely reliably (individual
p-values <107%). We conclude that despite the group wise
significant effect, only a subset of participants were able to
exploit the transferred structural knowledge of the hexagonal
graph. This may be because of the difficult nature of the graph
tasks, with many states, no visual or border cues to help define the
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Fig. 5 Transfer of structural knowledge allows inference of unobserved
links (Hexagonal graph). Participants had to indicate which of two pictures
is closer to a target picture. Participants that reached the second day of our
task with the correct prior expectation over the structural forms performed
significantly better in such task compared to participants with the wrong
structural prior (left panel) (30 participants in each group). They were able
to answer these questions significantly above chance even when there were
links that were never observed, and they had to choose between two
pictures with an identical number of observed links to the target (right
panel). One-tailed t test. **p <0.01, *p < 0.05. Error bar: SEM. Colorcode:
Logio(p-value).
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graph, and no feedback. Nevertheless, participants who did infer
the structure could use it to perform inference at levels far above
chance. We should further note that our models have a perfect
memory and no implicit noise, therefore, we expect them to be
better than human participants.

Using structural knowledge to set advantageous policies. Not
only can structural knowledge be used to infer unobserved
transitions, it can also be used to direct advantageous policies.
For example, while navigating on a graph with a community
structure, agents with no structural knowledge will spend large
periods trapped in a single community. A simple policy of
‘prefer connecting nodes’ overcomes this problem. When the
correct underlying structure is of community structure, our
basis sets model can infer it correctly (see Supplementary Fig. 2).
Our model also infers the number of communities correctly
(Fig. 6a upper panel). Using this particular basis set for transi-
tion matrix estimation allows direct identification of connecting
nodes (Fig. 3c). Indeed, the identity of the connecting nodes is
recovered correctly during the learning of the emission matrix
(Fig. 6a low panel, see ‘Methods’).

To establish whether participants can infer the existence of
community structure and use a prior over the structural forms to
inform their behaviour, we constructed a second experiment. In
this experiment, participants were also segregated into two
groups. As before, one group learned two hexagonal graphs and
the other group learned two graphs with community structure
during the first day. However now, both groups learned from
random walk and navigate on a community-structured graph
during the second day (Fig. 1a). Participants who learned graphs

with underlying community structure on the first day indeed
performed better on the second-day navigation task (number of
steps to the target is shorter, Fig. 6b upper panel, D,_, is the
initial distance between the starting picture and the target, see
‘Methods’ for complete statistical values). Furthermore, they
learned the associations faster. While learning the associations,
participants determined their own learning pace by choosing
when to observe the next pictures pair. Participants who expected
a graph with underlying community structure spent less time on
learning each pair of pictures than participants who expected a
Hexagonal graph (Fig. 6b upper left panel, p =0.003, t=3.19,
df = 38, two-tailed ¢ test). These results suggest that participants’
behaviour was affected by structural prior; the previously
experienced graph structure affected the learning policy of
participants. The learning policy that is adjusted to underlying
community structure leads to faster learning and better task
performance. One likely possibility is that, instead of learning the
individual pairwise associations, participants simply inferred the
community structure and assigned each node to the current
community, while identifying the connecting nodes.

In order to understand how different behavioural policies lead
to different performance, we examined participants’ choices
during navigation. During the navigation part of the task,
participants had to choose between two pictures (to get closer
to the target) or skip and sample a new pair (if they thought both
pictures took them further away). We examined participants’
choices during all trials in which one picture was a connecting
node and the other was not. Participants who had the correct
prior chose connecting nodes significantly more than participants
who had the wrong prior (p =0.03, t=2.25, df = 38 two-tailed
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Fig. 6 Policy transfer: learning graphs with underlying community structure. a Our agent was able to infer the correct number of communities (middle
panel, averaged inferred number of communities over 20 simulations). It was also able to infer the identities of the connecting nodes (lower panel, inferred
number of nodes divided to the number of connecting nodes according to the inferred graph size, see ‘Methods'). Shadows are the SEM, the centre is the
mean. b Participants with correct structural prior spend less time on learning the associations between the pictures (RT = response time for changing to
the next pair, upper panel—left). The number of steps to the target (ng.ps) is significantly lower for participants with the correct structural prior (upper
panels, D;—o is the initial number of links between the current picture and the target). During navigation, participants with the correct prior over the
structural forms choose connecting nodes more frequently (lower panel—left), they do so even if this choice takes them far away from the target (lower
panel—right). Error bars are the SEM, the centre is the mean. *p <0.05, **p <0.01 (20 participants in each group).
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t test, Fig. 6b left lower panel). Furthermore, this cannot be driven
by better inference of graph distances as they chose connecting
nodes more frequently, even if this choice was the wrong choice
(p=10.006, t=2.88, df =38, two-tailed ¢ test, it took them far
away from their target, Fig. 6b right lower panel). These results
imply that participants with the correct structural prior behave
according to a policy of ‘prefer connecting nodes’.

Here, inference of structural knowledge can lead to the transfer
of two different types of knowledge. First, the transfer of the
abstract transition structure (as participants did in the previous
task). Second, the transfer of unique behavioural policy that is
tailored to that particular structural form. We cannot identify
here whether our results originated from policy transfer only, or
whether participants also transfer abstract knowledge of the
transition structure itself. According to our model, inference of
structural knowledge allows transfer of the relevant basis set.
Basis set for community structure enables inference of connecting
nodes’ identity immediately when learning the emission matrix.
Therefore, exploiting this basis during the task should enable
faster identification of these nodes. This implies that transfer of
structural knowledge itself (at the form of the relevant basis set)
will lead to better identification of these special nodes. Further,
basis set representation generalizes over all tasks that are
governed by the same structural form, therefore, they allow the
semantic understanding of connecting nodes and the general-
ization of such policy. This experiment supports this idea but
other types of representation for connecting node identity may
enable the same behaviour.

Being trapped in a community for a long period can be
frustrating. Hence, escaping from a community might be
perceived as rewarding. One possible explanation for the choice
of connecting nodes is therefore simply that they have been more
rewarding in the past. However, this cannot explain the effect we
observed. We compared the behaviour of two groups of
participants that did the exact same task and only differ by the
underlying graph structures that have been learned the day
before. Participants with the wrong prior spent longer within
communities and would, under this argument, experience greater
reward when escaping them. Therefore, the value of connecting
nodes assigned by the participants with the wrong prior should be
higher. If participants chose according to value differences, we
should see the opposite effect. This model-free effect therefore
runs opposite to the behaviour we observe.

Discussion

We have shown, using a graph-learning task, that participants are
able to transfer abstract structural knowledge. They were able to
transfer abstract transition structure of the task and structurally
relevant behavioural policy. They exploited the transferred
structural knowledge to infer the existence of unobserved tra-
jectories, identify important task states and improve performance
on the task. Using a computational model, we have suggested a
representation for structural forms that allows generalization over
particularities of the current task and enables transfer of abstract
structural knowledge. Each structural form is represented by a
particular basis set that encodes flexibly the transition structures
that belong to that form. Each basis vector can be stretched and
compressed according to the inferred graph size, hence, the set
enables compressed and generalizable representation of the
transition structure!3. We demonstrated that having such repre-
sentations enables the correct inference of the structural form
governing the associations between states in the task. Approx-
imating the current transition matrix using a basis set allows
inference of routes that have not been taken before and inference
of the identities of important task states. Our current

experimental results suggest that humans do exploit abstract
structural knowledge, but whether they achieve this via basis
representations requires further experiments.

We compared our model to models of associative learning.
These models represent relations between states of the task using
associations between the representations of the states themselves.
Although simple associative models cannot infer the existence of
unobserved associations, smoothing of such representations
allows these inferences. However, our behavioural experiment
suggests that humans do exploit knowledge transfer for such
inferences. The ability to transfer structural knowledge requires
that participants infer or acquire the correct representation of the
hidden structure of the graph during the first day. One possibility
is that structural knowledge is acquired slowly via experiencing
different scenarios that share the same underlying structural form
during our life2’-2. In the context of our task, we suggest that the
experience during the first day shapes the prior over structural
forms on the second day®. Then, participants with the correct
structural prior are able to infer the correct structural form faster,
estimate better the current transition matrix and transfer the
correct behavioural policy, therefore achieving better perfor-
mance in the task. We would like to note that it is possible that
the brain exploits both abstract representation and associative
learning strategy that interact and complement each other.

In the current work, we considered two types of structural forms
to introduce the idea of basis sets representations for structural
knowledge. Theoretically, the idea of basis sets representation for
structural knowledge can be extended to other structures that are
common in nature, such as rings and hierarchies. For example,
eigenvectors of transition matrices with underlying structural form
of hierarchy contain the information on the layer of nodes in the
hierarchy (see supplementary Note 4). Similarly, to connecting
nodes in a graph with a community structure, this information
can be beneficial in performing a task and allows the learning of
the meaning of each layer over a variety of tasks with the same
underlying structural form.

Generalizing structural knowledge in the form of structural
forms have been suggested previously by Kemp et al.” They have
suggested a generative model for constructing a graph using
general structural elements, each belonging to a different struc-
tural form®. As this model exploits abstract structural knowledge,
we expect it to perform well on our tasks as well. Our choice of
basis sets for representing structural knowledge is inspired both
by spectral graph theory!32%30 and mainly by existing research
on the hippocampal-entorhinal system. Entorhinal cortex con-
sists of cells that have hexagonal activity patterns while the animal
walks freely in an arena (grid cells)®!. This activity pattern
resembles the patterns of transition matrix eigenvectors of hex-
agonal graphs3»33. Further, grid-like representations emerge in
environments/tasks that are not spatial but share similar statis-
tical structure34-36, These observations may suggest that grid cells
can be used as basis functions for all environments in which the
associations between the states are governed by the rules of 2D
Euclidean space. Further, basis sets representation for structural
knowledge is beneficial as it allows direct inference of the struc-
ture of the task without the need of mental simulations.

It has been suggested that grid cells are created using attractor
neural networks3/-38, This suggestion is supported by the obser-
vation that their activity correlation pattern is maintained during
sleep3*40, Further, grid cells remap (their activity pattern is
shifted) in new environments but their hexagonal activity pattern
remains?!. These observations may suggest that grid cells activity
pattern is stably represented and therefore can be recalled in new
environments that share the same underlying statistical pattern of
transition structure, in accordance with our basis sets hypothesis.
Further, our hexagonal graphs were a torus, such that there were
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no boundaries. Introducing boundaries and a policy in which the
agent prefers to stay near the boundaries, similarly to animals
behaviour, creates an asymmetrical transition structure. The right
eigenvectors of such representation hold the variation in transi-
tions and have patterns that resemble EC boundary cells*? (in
addition to hexagonal patterns, see Supplementary Note 2). We
can think of a boundary cell as part of a basis set that captures
special nodes in translational invariants graphs.

Inspired by graph theory, reinforcement learning and the
activity patterns in the hippocampal formation, we suggest that
the brain may represent structural forms in a form of basis sets.
Using modelling, we show that such basis sets allow transfer of
structural knowledge that is relevant to the current task. Our
behavioural experiments demonstrate that humans can transfer
abstract structural knowledge and exploit it in a new task.

Methods

The generative model (basis sets model). In this work, we follow Tenenbaum
et al.!8 in suggesting that humans represent structural knowledge as structural
forms. Each structural form is a family of graphs in which the nodes of the graph
are organized according to a particular rule. For example, hexagonal grid con-
nectivity patterns will always present a translational and rotational symmetry, or in
community structure, the nodes within a community will be highly interconnected,
while the connectivity between communities is sparse. We assume that on each
new task, humans infer the structural form that best fits the graph of the current
task. Following this inference, they can transfer the relevant information that
represents this structural form.

Following Kemp and Tenenbaum?, we formalized the inference over structural
forms using a hierarchical generative model of graphs. In our task, the observations
of the agents and participants are Markovian (each state depends only on the state
before) and follow a transition matrix that is characterized by an underlying graph
structure. Each graph belongs to one of the structural forms that are considered in
our experiments (hexagonal grid and community structure). We assume that each
task structural form (S) is generated by sampling from a uniform distribution over
the structural forms. Given a structural form, the graph dimensions () are sampled
from a prior distribution that is unique for each structural form (see below).
Together, Sy and 6 fully determine the transition matrix of the graph (Aff). Then,
given a transition matrix, the emission matrix (B) is sampled (in the following, we
will not find the posterior of B, therefore we do not state any prior for B here).
Using these two matrices, the observation (O) can be generated.

5~ p(S)) = Cat(%l) 3)

6~ p(6lS,) = Cat Gl) )

Where cat is the categorical distribution.

Model inversion (basis sets model). The task of the agent is to infer the hidden
states of this generative model; given a set of observations, the agent should infer,
using Bayes rule, the structural form and graph dimensions () that characterized
the graph of the current task or environment.

p(S, 6|0) o p(0|6, Sp)p(01S)p(Sy) (5)

Where:

p(016.5,) = [ p(O1B.6.5,)p(516.5,)d. (©)

Here the integral is over all possible values of the entries in the emission matrix B.
Solving this integral is hard, therefore, we have approximated it by using the
Bayesian Information Criterion (BIC):

p(018,5) ~ e 2 = goel-tloeld) 7)
Where N is the number of states in the graph, k is the number of observations and
L=p(0|6, Sf,B) is the likelihood of the sequence of observations with B as the
maximum likelihood estimate of the emission matrix. The transition matrix (A) is
fully defined by the structural form and the dimension of the graph. As the
observations depend only on the transition and emission matrices, we can write the
likelihood as: L = p(06, S, B) = p((_j\Ag/ , B) where ;‘sg/ is an estimated transition
matrix (see below). Our model is an HMM, therefore, we can exploit a variant of
the Baum-Welch algorithm*3 to estimate B from the observations and calculate the
likelihood L (see Supplementary Methods for details). The Baum-Welch algorithm
gives a maximum likelihood estimate for the transition and emission matrices as

well as the likelihood itself. Here, instead of learning the transition and emission
matrices from the data (O), we learned only the emission matrix and assumed that
the transition matrix is known; for each structural form and graph size that were
considered, we approximated the transition matrix using the relevant basis set (see
below). For each approximated transition matrix we estimated B and L. Using these
quantities, we estimated p(S;, 6|0) and inferred the current structural form and
dimension.

The structural form of the current task is inferred by calculating the posterior
and choosing its maximum (MAP):

P(sf|6) = Zp(sfvelé) (8)
[

Following the inference of the structural form the current graph size is inferred
using MAP of:

(610, ;) ox p(06,,)p(6]S;) ©)

Approximating the transition matrices using basis sets. To allow generalization
over particularities of the current graph structure such as its dimensions (6), the
transition matrices are approximated using basis sets (Us) for structural knowl-
edge. Each structural form is represented by a unique basis set and transition
matrices of all graphs that share structural form are approximated using this set
(see below the definitions of the basis set for each of the structural forms). Instead
of learning the transition and emission matrix from the data ((3), we infer the
transition matrix under the assumption that the task transition matrix can be
approximated by those basis sets that are already known. Therefore, once the agent
solved the inference problem over structural forms and graph size, it can use its
prior representations of possible basis sets to estimate the new transition matrix.
For each structural form, given a particular graph size, the basis vectors in the
set can be stretched and compressed, using interpolation to adjust for the currently
estimated graph (matlab imresize). The approximated transition matrix becomes:

Aff =f(Uff Sy Uf}T), where Ug is the adjusted basis set, Sy is a diagonal matrix
of weights (eigenvalues in the hexagonal grid graphs and ones in the community-
structure graphs), and f is a threshold linear function. We then subtract the
diagonal and normalize the matrix (see Fig. 3d).

Inferring graph size. We assumed, for simplicity, that there are three different

possible graph sizes for each structural form, therefore the prior probabilities of 0
are uniform within this set and zero otherwise. We further assumed, for simplicity,
that the two dimensions of the hexagonal grid are equal and the number of nodes
in a community is also equal, hence 0 defines a vector of possible number of nodes
in a graph. For hexagonal graphs we considered N = [25,36,49], for a graph with
underlying community structure N = [28,35,42] with equal prior probability. We
emphasise that the basis set (Ug() for each transition structure within a structural
form is a scaled or truncated version of a general basis set for that structural form.

Estimating distances between two pictures. Using the inferred graph transition
and emission matrices, the agent approximated the distance between two obser-
vations. As the transition structure is approximately known, we estimated the dis-
tance matrix between two abstract states (z;) on the graph using this approximation;
we adopted a threshold function of the transition matrix to estimate the Adjacency
matrix and then estimated the abstract distance matrix (D(z,,, zx)) using it. As the
distance matrix represents the distances between abstract states, the distances or the
number of steps between the observations themselves is calculated by:

D(0;,0) = p(z,|0)D(z,,2)p(2l0) (10)
km

The emission matrix gives us B, (O;) = p(z,,|0;), as p(z,,) is uniform, we inverted
p(zm) by:
p(Oilz,) _ -

p(2,10,) = 5 (0,2 = B

Then, we multiply the abstract distance matrix by B to get the distance matrix
between the observations:

(11)

D=B-D B (12)

Using this matrix, we calculated the decision of the agent when selecting
between presented pictures (that is, observations; each observation corresponds to
one state on the graph), when tasked with selecting the picture (state) which is
closer to the target picture (state) in the graph. We would like to note here that the
actual emission matrix in our task is not probabilistic and it is an identity matrix.
When the agent estimates the emission matrix from the observations it converges
to any permutation matrix that maintains the symmetry of the graph. There are
other approximations for the distances between observations that can be adopted
which take into account the probability structure of the transition matrix, such as
the SR3.
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Connecting node inference. For estimating the number of stimuli (that is,
observations) that are correctly inferred to be connecting nodes, we calculated the

fraction of correctly inferred connecting nodes as: f¢, = % for each simulated
block. Here, Is, is a vector of the size of the inferred number of states (that is, graph
size), where entries corresponding to connecting nodes are equal to one, with the
remaining nodes equal to zero. Similarly, Ip, is a vector of size equal to the number
of stimuli (observations), where values are equal to one when that stimulus cor-
responds to a connecting node, and zero otherwise. nlc corresponds to the number
of connecting nodes in the inferred graph. The fraction of nodes incorrectly

Is,.-B.IpT _
< where Is,, = 1 — Is..

inferred as connecting nodes is defined as: fIc, =

Basis sets. Community structure: The number of nodes within each community is
considered constant for simplicity. There is an assignment vector for each com-
munity with a value of one for each node that belongs to that community and zero
otherwise. The number of such vectors is determined by the number of commu-
nities that are currently considered. Further, there are ‘connecting node assignment
vectors’ for each community, which give a probability for a node in a certain
community to connect to another node in another community, the probability for
a second connecting node is lower. This probability is a Gaussian with a number of
connecting nodes as its variable. See supplementary Note 3 for further discussion
on this choice.

Hex: The eigenvectors of a large hexagonal graph were computed. We kept as a
basis set the 12 most informative eigenvectors (excluding the constant). We then
resize the eigenvectors according to the size of the graph that is currently
considered using standard interpolation method (matlab imresize).

Successor representation model. The successor representation is defined as:

SR = "y'A' = inv(I - yA), (13)
t

where A is the transition matrix, I is the identity matrix and y is a discount factor.

The SR can be updated within blocks, after updating the transition matrix
online, or using TD learning?4. After observing a transition at time step ¢ + 1 of
s; — s, the SR is updated according to:

SR, (5t+175/) = SR(s;, ') +alI(s, = ¢) + ySR, (5t+1~,s/) —SRy(s;,5)],  (14)
where « is the learning rate. We made the SR symmetrical at the end of each block.
Spectral regularization (filtering the SR using its own eigendecomposition):
We have calculated the eigendecomposition (using SVD) of the SR that has
been learnt using TD. We then calculated the regularized SR by: SR, = U,,S,, UL,

where U, is the matrix of the m =7 most informative eigenvectors of the
symmetrised SR and S,, is a diagonal matrix with the m = 7 largest eigenvalues on
its diagonal. y = 0.8. The number of simulations for Fig. 4b is 10.

Behavioural experiments. Participants: We recruited 100 participants, 60 parti-
cipants for experiment 1 (30 in each group) and 40 participants for experiment 2
(20 in each group). All participants are UCL students with an average age of 23.5.

The study was approved by the University College London Research Ethics
Committee (Project ID 11235/001). Participants gave written informed consent
before the experiment.

Graphs structure. Experiment 1: transfer of hexagonal structure: Each hexagonal
graph consisted of 36 nodes and periodic boundary conditions as shown in Fig. 1.

Experiment 2: transfer of community structure: Each graph consisted of five
communities with seven nodes each. Within a community, each node was
connected to all other nodes except for connecting nodes that were not connected
to each other but were each connected to a connecting node of a neighbouring
community (Fig. 1). Therefore, all nodes had a degree of six, similarly to hexagonal
graphs. Our community-structure graph had a hierarchical structure, wherein
communities are organised on a ring. We hypothesized that inference of the second
order structure of a ring and transfer of this structure from day one to day two will
allow participants to infer a missing link that closes the ring. We therefore
introduced a missing link during the second day (see Supplementary Note 1 for the
results).

Experimental procedures. Participants learned two graphs with the same
underlying structure but different stimuli during the first day. Stimuli were selected
randomly, for each participant, from a bank of stimuli (separate bank for each
graph). Each graph was learnt during four blocks (Fig. 1b; 4 blocks for graph 1
followed by 4 blocks for graph 2). Participants could take short resting breaks
during the blocks. They were instructed to take a longer resting break after com-
pleting learning the first graph. A third graph was learnt on the second day during
seven blocks of the task. Data analysis is for all second-day trials.

Block structure. The structure of each experiment block in each experiment and
day is outlined in Tables 1-2 below (the order of tasks in a block corresponds to

Table 1 Transferring of hexagonal structure.

Task name Day 1 Day 2
Learning phase Random walk Pairs
Extending pictures sequences Yes Yes
Can it be in the middle Yes Yes
Navigation Yes No
Distance estimation Yes Yes
Table 2 Transferring of community structure.

Task name Day 1 Day 2
Learning phase Random walk Random walk
Extending pictures sequences Yes Yes

Can it be in the middle Yes Yes
Navigation Yes Yes

Distance estimation Yes Yes

Note: “Yes" and “No" refer to the inclusion of a task in an experimental block.

moving from the top to the bottom of the corresponding table). Next, we elaborate
the various components of each block.

Learning phase: We used different protocols for the learning phases of
experimental blocks as follows:

(1) In the “Random walk” protocol participants learned associations between
graph nodes by observing a sequence of pairs of pictures which were sampled from
a random walk on the graph (successive pairs of pictures shared a common
picture). Participants were instructed to ‘say something in their head’ in order to
remember the associations. Hexagonal graphs included 120 steps of the random
walk per block and community-structured graphs included 180 steps per block (we
introduced more pictures in the community graph condition as random walks on
such graphs result in high sampling of transitions within a certain community and
low sampling of transitions between communities).

(2) In the “Pairs” protocol participants learned the associations between graph
nodes by observing pairs of pictures. Each pair of pictures corresponds to two
neighbouring nodes (i.e., an edge) on the graph. Some edges were excluded from
the graph (“missing links”), otherwise, the pairs were sampled uniformly randomly
according to a uniform distribution and independently across pairs. 150 pairs were
presented in each block (with repetition).

The reason we used the “pairs” protocol for Day 2 of Exp. 1 is as follows: Exp. 1
was designed to test participants’ ability to infer missing graph links (edges).
However, a link that is constantly missing may lead to an inference of the existence
of an obstacle rather than an unobserved link. We speculated that learning by
sampling pairs of neighbouring nodes, instead of learning from pairs that are taken
from random walks on the graph, would reduce this risk. Following the same
reasoning, we excluded the navigation task (described below) during the second
day of that experiment (hexagonal condition only), as navigation necessarily
involves walks on the graph (see “Navigation” rows of Tables 1 and 2).

Extending pictures sequences: Given a target picture, which of two sequences of
three pictures can be extended by that picture (a sequence can be extended by a
picture only if it is a neighbour of the last picture in the sequence, the correct
answer can be sequence 1/sequence 2/both sequences): Sixteen questions per block.
(A picture could not appear twice in the same sequence, therefore, if the target
picture is already in the sequence the correct answer was necessarily the other
sequence).

Can it be in the middle: Determine whether a picture can appear between two
other pictures, the answer is yes if and only if the picture is a neighbour of the two
other pictures. Sixteen questions per block.

Navigation task: The aim—navigating to a target picture. Participants are
informed that they are currently at the picture that appears on the left of the screen.
They were asked to choose between two pictures that are associated with that
picture or skip and sample again two pictures that are associated with the current
picture (skip is counted as a step). On each step participants were instructed to
choose a picture that they think has a smaller number of links to the target picture
(according to their memory). Following their choice, the chosen picture appeared
on the left and two new pictures, that correspond to states that are neighbours of
the chosen picture, appear in the middle (Fig. 1b). Once a participant selected a
neighbour of the target picture, the target picture itself can appear as a picture that
can be chosen. The game terminated when either the target was reached or
200 steps were taken (without reaching the target). In the latter case a message ‘too
many steps’ was displayed. On the first block, the number of links from the current
picture to the target picture was shown on the screen. Participants played three
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games in each block. The starting distance (number of links) between the starting
picture to the target was 2, 3 and 4.

Distance estimation: Which of two pictures has the smallest number of links to a
target picture: 45 questions per block.

Statistical values. First experiment (Fig. 5)

All questions: p-value = 0.0068, t = 2.54, sd = 0.0547, ci=[0.0124 inf], d = 0.699

Inference questions: p-value = 0.016, t=2.19, sd = 0.066, ci = [0.0088 inf],
d=0.565

One-tailed ¢ test, df = 58. The results are significant for two-tailed test as well.

Second experiment (Fig. 6)

Response time (Learning pace): p-value = 0.003, t=3.19, sd = 0.5, ci = [0.18,
0.83], d =1.01 (two-tailed, df = 38).

Correct structural prior leads to faster navigation to the target:

Number of steps to the target is two, p-value = 0.005, t = —2.68, sd = 14.58,
ci = [—inf, —4.6], d = 0.85.

Number of steps to the target is three, p-value = 0.026, t = —2.02, sd = 14.85,
ci=[—inf, —1.48], d =0.63.

Number of steps to the target is four, p-value = 0.006, t = —2.6, sd = 10.54,
ci = [—inf, —3.04], d = 0.82.

One-tailed ¢ test, df = 38.

Choose connecting nodes:

All answers: p-value = 0.03, t = 2.25, sd = 0.1, ci =[0.007,0.13], d =0.71 (two-
tailed, df = 38)

Incorrect answer: p-value = 0.006, t =2.88, sd = 0.1, ci =[0.03,0.16], d =0.91
(two-tailed, df = 38)

ci is the confidence interval and d is Cohen d’ (effect size).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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