6,008 research outputs found

    Experimental pharmacological research regarding some newly synthesized benzamides on central nervous system functions

    Get PDF
    Three newly synthesized benzamides by the Department of Pharmaceutical Chemistry of the Faculty of pharmacy from the University of Medicine and Pharmacy „Carol Davila” Bucharest were tested in order to determine whether these new molecules have similar effects on the central nervous system as those already in therapeutic use belonging to the same chemical group, such as tiapride (neuroleptic) or lidocaine (local anaesthetic). Tests were carried out on NMRI mice which were given new compounds, conventionally named I5C, I14C, and II5C in a dose of 1/20 of the lethal dose 50% (LD50), as previously determined. They received this treatment daily for 21 days. The evasive–investigating capacity of mice was determined using the platform test, and the motor activity using an Activity cage device. The results have shown that compounds I5C and II5C decrease the investigation capacity of the mice; and compound I5C inhibits motor activity, while II5C stimulates it. Thus we concluded that only compounds I5C and II5C have a neuroleptic potential that might be investigated further

    A structural systematic study of three isomers of difluoro-N-(4-pyridyl)benzamide

    Get PDF
    The isomers 2,3-, (I), 2,4-, (II), and 2,5-difluoro-N-(4-pyridyl)benzamide, (III), all with formula C₁₂H₈F₂N₂O, all exhibit intramolecular C-H...O=C and N-H...F contacts [both with S(6) motifs]. In (I), intermolecular N-H...O=C interactions form one-dimensional chains along [010] [N...O = 3.0181 (16) Å], with weaker C-H...N interactions linking the chains into sheets parallel to the [001] plane, further linked into pairs via C-H...F contacts about inversion centres; a three-dimensional herring-bone network forms via C-H...π(py) (py is pyridyl) interactions. In (II), weak aromatic C-H...N(py) interactions form one-dimensional zigzag chains along [001]; no other interactions with H...N/O/F < 2.50 Å are present, apart from long N/C-H...O=C and C-H...F contacts. In (III), N-H...N(py) interactions form one-dimensional zigzag chains [as C(6) chains] along [010] augmented by a myriad of weak C-H...π(arene) and O=C...O=C interactions and C-H...O/N/F contacts. Compound (III) is isomorphous with the parent N-(4-pyridyl)benzamide [Noveron, Lah, Del Sesto, Arif, Miller & Stang (2002). J. Am. Chem. Soc. 124, 6613-6625] and the three 2/3/4-fluoro-N-(4-pyridyl)benzamides [Donnelly, Gallagher & Lough (2008). Acta Cryst. C64, o335-o340]. The study expands our series of fluoro(pyridyl)benzamides and augments our understanding of the competition between strong hydrogen-bond formation and weaker influences on crystal packing

    Entry point into new trimeric and tetrameric imide-based macrocyclic esters derived from isophthaloyl dichloride and methyl 6-aminonicotinate

    Get PDF
    The one-step reaction of isophthaloyl dichloride with the 2-aminopyridine derivative (methyl 6-aminonicotinate) yields (i) a trimer-based macrocycle (EsIO)3 and (ii) a tetramer-based macrocycle (EsIO)4 in modest isolated synthetic yields (total of 25%), together with (iii) longer open-chain oligomers. The macrocyclisation relies on the semi-flexible imide hinge formed by reaction of the 2-amino(pyridine) functional group with two acyl chloride functional groups. The determining factors in macrocycle synthesis are (a) imide formation using the heteroaromatic ortho-N functionality; (b) the inherent ability of the imide to twist by 85-115 degrees from planarity (as measured by the CO...CO imide torsion angles and from computational calculations), thereby providing a hinge for macrocyclic ring closure or potentially (non)helical assembly in oligomer/polymer formation and (c) the conformational flexibility of the isophthaloyl group with meta-related carbonyl groups to twist and adopt either syn- or anti-conformations, although the syn-conformation is observed structurally for all isophthaloyl groups in both (EsIO)3 and (EsIO)4 macrocycles

    Experimental pharmacological research regarding some new quinazolin-4-ones derivatives

    Get PDF
    A series of new compounds with quinazolin-4-one structure, synthesized by the Pharmaceutical Chemistry Department of the Faculty of Pharmacy of the University of Medicine and Pharmacy “Carol Davila” Bucharest, was studied. Five of them were selected, conventionally named S1, S2, S3, S4, S5, and investigated in terms of their potential influence on the central nervous system (CNS). For this purpose, the antidepressant effect was determined using the forced swimming test; the anxiolytic/ anxiogenic effect was determined using the suspended plus-shaped maze (Ugo Basile); the effect on the motor activity was determined using the Ugo Basile activity cage; and the potential analgesic effect was investigated using the hot plate test (Ugo Basile). Compounds S3 and S5 lowered the motor activity and showed an anxiolytic effect, while S1 and S2 proved to have antidepressant and analgesic effects. A good correlation between antidepressant and analgesic effects was observed, consistent with the fact that analgesic drugs, by increasing norepinephrine and serotonin levels in the pain inhibiting descendent pathways, can be used as co-analgesics in therapy

    Structural systematic studies and conformational analyses of a 3x3 isomer grid of fluoro-N-(pyridyl)benzamides; physicochemical correlations, polymorphism and isomorphous relationships

    Get PDF
    The effect of fluorine and pyridine N atom substitution patterns on molecular structure and conformation is probed in a 3 3 isomer grid (Scheme 1) of fluoro-N-(pyridyl)benzamides (Fxx) (C12H9N2OF, x = para-/meta-/ortho-) to evaluate and correlate structural relationships between the solid-state and ab initio calculations. Physicochemical comparisons are analysed with an extended series of three related 3 x 3 isomer grids. Our analysis integrates crystal structure analyses, computational chemistry and conformational analyses together with NMR data and physicochemical trends such as melting point analysis. This study concludes structural systematics survey of four fluoro/methyl substituted benzamide/pyridinecarboxamide isomer grids

    Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds

    Get PDF
    Csp(3)-H oxidation of benzylic methylene compounds is an established strategy for the synthesis of aromatic ketones, esters, and amides. The need for more sustainable oxidizers has encouraged researchers to explore the use of molecular oxygen. In particular, homogeneous metal-catalyzed aerobic oxidation of benzylic methylenes has attracted much attention. This account summarizes the development of this oxidative strategy in the last two decades, examining key factors such as reaction yields, substrate: catalyst ratio, substrate scope, selectivity over other oxidation byproducts, and reaction conditions including solvents and temperature. Finally, several mechanistic proposals to explain the observed results will be discussed.(IT-774-13 (Basque Government) and CTQ2017-86630-P (Spanish Ministry of Economy and Competitiveness) projects

    Evaluation of melanin-targeted radiotherapy in combination with radiosensitizing drugs for the treatment of melanoma

    Get PDF
    The incidence of malignant melanoma is rising faster than that of any other cancer in the United States. An [131I]-labeled benzamide - [131I]MIP-1145 - selectively targets melanin, reduces melanoma tumor burden and increases survival in preclinical models. Our purpose was to determine the potential of radiosensitizers to enhance the anti-tumor efficacy of [131I]MIP-1145. Melanotic (A2058) and amelanotic (A375 and SK-N-BE(2c)) cells were treated with [131I]MIP-1145 as a single agent or in combination with drugs with radiosenitizing potential. Cellular uptake of [131I]MIP-1145 and toxicity were assessed in monolayer culture. The interaction between radiosensitizers and [131I]MIP-1145 was evaluated by combination index analysis in monolayer cultures and by delayed growth of multicellular tumor spheroids. [131I]MIP-1145 was taken up by and was toxic to melanotic cells but not amelanotic cells. Combination treatments comprising [131I]MIP-1145 with the topoisomerase inhibitor topotecan or the PARP-1 inhibitor AG014699 resulted in synergistic clonogenic cell kill and enhanced delay of the growth of spheroids derived from melanotic melanoma cells. The proteasome inhibitor bortezomib had no synergistic cytotoxic effect with [131I]MIP-1145 and failed to enhance the delay of spheroid growth. Following combination treatment of amelanotic cells, neither synergistic clonogenic cell kill nor enhanced growth delay of spheroids was observed

    Organocatalytic synthesis of axially chiral atropisomers

    Get PDF
    This review summarises the recent progress made in the organocatalytic synthesis of atropisomeric compounds. Methodologies based on dynamic kinetic resolution and direct access to BINOL-like biaryls are described. A particular emphasis is given to reaction mechanisms and to the development of strategies to obtain stable products by increasing the barrier to atropisomer interconversion during the reaction
    corecore