1,909 research outputs found

    Stochastic rounding and reduced-precision fixed-point arithmetic for solving neural ordinary differential equations

    Get PDF
    Although double-precision floating-point arithmetic currently dominates high-performance computing, there is increasing interest in smaller and simpler arithmetic types. The main reasons are potential improvements in energy efficiency and memory footprint and bandwidth. However, simply switching to lower-precision types typically results in increased numerical errors. We investigate approaches to improving the accuracy of reduced-precision fixed-point arithmetic types, using examples in an important domain for numerical computation in neuroscience: the solution of Ordinary Differential Equations (ODEs). The Izhikevich neuron model is used to demonstrate that rounding has an important role in producing accurate spike timings from explicit ODE solution algorithms. In particular, fixed-point arithmetic with stochastic rounding consistently results in smaller errors compared to single precision floating-point and fixed-point arithmetic with round-to-nearest across a range of neuron behaviours and ODE solvers. A computationally much cheaper alternative is also investigated, inspired by the concept of dither that is a widely understood mechanism for providing resolution below the least significant bit (LSB) in digital signal processing. These results will have implications for the solution of ODEs in other subject areas, and should also be directly relevant to the huge range of practical problems that are represented by Partial Differential Equations (PDEs).Comment: Submitted to Philosophical Transactions of the Royal Society

    A transprecision floating-point cluster for efficient near-sensor data analytics

    Full text link
    Recent applications in the domain of near-sensor computing require the adoption of floating-point arithmetic to reconcile high precision results with a wide dynamic range. In this paper, we propose a multi-core computing cluster that leverages the fined-grained tunable principles of transprecision computing to provide support to near-sensor applications at a minimum power budget. Our design - based on the open-source RISC-V architecture - combines parallelization and sub-word vectorization with near-threshold operation, leading to a highly scalable and versatile system. We perform an exhaustive exploration of the design space of the transprecision cluster on a cycle-accurate FPGA emulator, with the aim to identify the most efficient configurations in terms of performance, energy efficiency, and area efficiency. We also provide a full-fledged software stack support, including a parallel runtime and a compilation toolchain, to enable the development of end-to-end applications. We perform an experimental assessment of our design on a set of benchmarks representative of the near-sensor processing domain, complementing the timing results with a post place-&-route analysis of the power consumption. Finally, a comparison with the state-of-the-art shows that our solution outperforms the competitors in energy efficiency, reaching a peak of 97 Gflop/s/W on single-precision scalars and 162 Gflop/s/W on half-precision vectors

    On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods

    Get PDF
    Multiple results in the literature exist that indicate that all computed solutions to chaotic dynamical systems are time-step dependent. That is, solutions with small but different time steps will decouple from each other after a certain (small) finite amount of simulation time. When using double precision floating point arithmetic time step independent solutions have been impossible to compute, no matter how accurate the numerical method. Taking the well-known Lorenz equations as an example, we examine the numerical solution of chaotic dynamical systems using very high order methods as well as extended precision floating point number systems. Time step independent solutions are obtained over a finite period of time. However even with a sixteenth order numerical method and with quad-double floating point numbers, there is a limit to this approach

    Reproducible Floating-Point Aggregation in RDBMSs

    Full text link
    Industry-grade database systems are expected to produce the same result if the same query is repeatedly run on the same input. However, the numerous sources of non-determinism in modern systems make reproducible results difficult to achieve. This is particularly true if floating-point numbers are involved, where the order of the operations affects the final result. As part of a larger effort to extend database engines with data representations more suitable for machine learning and scientific applications, in this paper we explore the problem of making relational GroupBy over floating-point formats bit-reproducible, i.e., ensuring any execution of the operator produces the same result up to every single bit. To that aim, we first propose a numeric data type that can be used as drop-in replacement for other number formats and is---unlike standard floating-point formats---associative. We use this data type to make state-of-the-art GroupBy operators reproducible, but this approach incurs a slowdown between 4x and 12x compared to the same operator using conventional database number formats. We thus explore how to modify existing GroupBy algorithms to make them bit-reproducible and efficient. By using vectorized summation on batches and carefully balancing batch size, cache footprint, and preprocessing costs, we are able to reduce the slowdown due to reproducibility to a factor between 1.9x and 2.4x of aggregation in isolation and to a mere 2.7% of end-to-end query performance even on aggregation-intensive queries in MonetDB. We thereby provide a solid basis for supporting more reproducible operations directly in relational engines. This document is an extended version of an article currently in print for the proceedings of ICDE'18 with the same title and by the same authors. The main additions are more implementation details and experiments.Comment: This document is the extended version of an article in the Proceedings of the 34th IEEE International Conference on Data Engineering (ICDE) 201

    Computing the Lambert W function in arbitrary-precision complex interval arithmetic

    Full text link
    We describe an algorithm to evaluate all the complex branches of the Lambert W function with rigorous error bounds in interval arithmetic, which has been implemented in the Arb library. The classic 1996 paper on the Lambert W function by Corless et al. provides a thorough but partly heuristic numerical analysis which needs to be complemented with some explicit inequalities and practical observations about managing precision and branch cuts.Comment: 16 pages, 4 figure
    • …
    corecore