
340 Nonlinear Analysis: Modelling and Control, 2011, Vol. 16, No. 3, 340–352

On the numerical solution of chaotic dynamical systems
using extend precision floating point arithmetic
and very high order numerical methods

Scott A. Sarra, Clyde Meador

Marshall University
One John Marshall Drive, Huntington, WV 25755, USA
sarra@marshall.edu

Received: 11 August 2010 / Revised: 28 Mart 2011 / Published online: 19 September 2011

Abstract. Multiple results in the literature exist that indicate that all computed solutions to chaotic
dynamical systems are time-step dependent. That is, solutions with small but different time steps
will decouple from each other after a certain (small) finite amount of simulation time. When using
double precision floating point arithmetic time step independent solutions have been impossible to
compute, no matter how accurate the numerical method. Taking the well-known Lorenz equations
as an example, we examine the numerical solution of chaotic dynamical systems using very high
order methods as well as extended precision floating point number systems. Time step independent
solutions are obtained over a finite period of time. However even with a sixteenth order numerical
method and with quad-double floating point numbers, there is a limit to this approach.

Keywords: chaos, ODEs, numerical methods, extended floating point precision, Lorenz system,
implicit Gauss Runge–Kutta methods.

1 Introduction

The numerical solution of nonlinear systems of differential equations that exhibit chaotic
behavior, such as the well-known Lorenz equations [1]

x′ = σ(y − x), x(0) = x0,

y′ = rx− y − xz, y(0) = y0, (1)
z′ = −bz + xy, z(0) = z0,

has proven very challenging. Using existing numerical methods and current day computer
technology, researchers have not been able to produce time-step independent numerical
solutions of chaotic systems. Solutions with small but different time steps will decouple
from each other after a certain (small) finite amount of simulation time. One of the
defining traits of a chaotic system is its sensitive dependence on initial conditions which
is characterized by nearby solutions separating exponentially fast due to the fact that the

c© Vilnius University, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nonlinear Analysis: Modelling and Control

https://core.ac.uk/display/322857589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On the numerical solution of chaotic dynamical systems 341

system has a positive Liapunov exponent [2]. Thus, approximate solutions starting from
exactly the same initial conditions but using a different time step size will drift away from
each other if truncation and rounding errors prevent the approximate solution from being
accurate to a sufficient number of decimal places.

The sensitivity of the system (1) was originally noted by Lorenz in 1963 [1]. While
trying to repeat previous numerical work with a second order Runge–Kutta (RK) method,
Lorenz wrote down the output of the method and stopped the long calculation. Later
the method was restarted with the recorded intermediate values as initial conditions. The
final result was a vastly different solution than he was trying to recreate. The disparity
was caused by the recorded intermediate values not exactly matching the floating point
numbers in memory.

Recent accounts of the difficulty in calculating accurate long time, time-step indepen-
dent solutions of the Lorenz equations (and other chaotic equations) include the following:

• Reference [3] considers the numerical solution of chaotic differential equations in
general with an application to the one-dimensional Kuramoto–Sivashinsky equa-
tion. The author concludes that “No computed chaotic solution, which is indepen-
dent of the integration time-step employed, exists.”.

• In [4], the following was concluded about the Lorenz equations: “Similar behavior
was noted with Adams–Bashforth methods up to the fifth order; an implicit Crank–
Nicholson method; second-order and forth-order Runge–Kutta methods; adaptive
methods; and compact time-difference schemes. In no case was a convergent solu-
tion obtained for t > 20.”.

• Reference [5] discusses the inability to produce time-step independent solutions
of the Lorenz equations with second and fourth order RK methods. Comments
supporting the conclusions of [5] were made in the note [6].

• Reference [7] uses the arbitrary precision capabilities of Mathematica with up to
800 digits of decimal precision and high order Taylor series methods of up to order
400 to calculate accurate solutions of the Lorenz equations. Extended arbitrary
precision floating point arithmetic is much more computationally expensive than
the extended fixed precision that we consider in this work.

• Higher order methods (order 4 to 8) with error control and adaptive step-size have
been used on the Lorenz equations. The results are summarized in the book [8,
p. 245] where a numerical example is explained: “The solution is, for large t,
extremely sensitive to the errors of the first integration steps. For example, at t =
50 the numerical solution becomes totally wrong, even if the computations are
preformed in quadruple precision with tol = 10−20. Hence the numerical results
of all methods would be equally useless and no comparison makes any sense.
Therefore we chose tend = 16.”

The goal of this work is to calculate solutions of the Lorenz equations that are time-
step independent up to t = 100 in the sense that the maximum error between two
computed solutions with small but different time steps is less than a tolerance of tol =
5 e − 14. In addition to obtaining time step independent solutions, we use two vastly

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 340–352



342 S.A. Sarra, C. Meador

different types of numerical methods to obtain the solutions. This is because, as pointed
out in [9], that a practical way of judging the validity of the numerical results from
a non-linear dynamical system is to use two or more different methods to solve the same
problem. If the two solutions agree, then we can have some confidence in the computed
solutions. However with chaotic systems, we can not claim that the agreeing solutions are
the true solutions of the system. The two numerical methods that are used are a 11 stage,
order 8, explicit Runge–Kutta method and a 8 stage, order 16, implicit Runge–Kutta
method. Constant step sizes are used and the methods are implemented in floating point
number systems using double, double-double, and quad-double data types.

In this work we numerically explore chaotic solutions of the Lorenz system. It should
be noted that much is known theoretically about the existence of chaos in the Lorenz
system as well. The first mathematical proof of such chaotic behavior in the Lorenz system
was given in reference [10] in 1995. Subsequently, more efficient ways of proving chaos
have been proposed [11].

2 Floating point numbers systems

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is the most widely-used
standard for floating-point computation. It is followed by virtually every computer used in
scientific computing. The current version, IEEE 754-2008, was published in August 2008
and is a revision of the original version that was published in 1985. Properties of three of
the binary formats specified by the standard are listed in Table 1. The column labeled dps
lists the number of decimal digits to which a base ten number is correctly represented to
in the floating point system. In a given floating point number system, every real number
is approximated and every floating point operation is performed with a relative error of at
most machine epsilon, εm.

IEEE double floating point arithmetic is sufficiently accurate for most scientific ap-
plications. However, for a rapidly growing body of important scientific computing appli-
cations, a higher level of numeric precision is required. A sampling of such applications
are surveyed in [12]. An additional example is given by the first author in radial basis
functions approximation methods [13]. The addition of the quadruple type to the 2008
IEEE standard is in response to the need for more precise floating point arithmetic. To
date, a hardware implementation of the quadruple type does not exist for mainstream
desktop computers. When a hardware implementation of quadruple precision is available
it will likely be at least twice slower than double precision [14]. The books [15] and [16]
can be consulted for more information on floating point arithmetic.

An alternative to the quadruple type is the double-double type, in which the uneval-
uated sum of two IEEE double numbers is used to represent a number with twice the
precision. A simple example is that 8.765 × 105 + 4.32 × 101 can be used to represent
the number 8.765432×105. The idea can be extended to a quad-double number that is an
unevaluated sum of four IEEE doubles with four times the precision of a double. A freely
available, open source C++ library is available that implements algorithms for basic arith-
metic operations for the double-double and quad-double types, as well as some algebraic
and transcendental functions [17]. Modifying existing C or C++ software to implement

www.mii.lt/NA



On the numerical solution of chaotic dynamical systems 343

extended precision is in most cases trivial and only requires an include statement and a
define statement such as the following:

#include <qd/dd_real.h>
#define double dd_real

There is a performance penalty for precisions beyond double. Typical execution time
of the formats are listed in Tables 1 and 2 where the double time has been normalized to
be one. There is a range of execution time penalty factors for each extended type due to
several reasons. When implemented in software, the quadruple and double-double types
can be expected to run 5 to 10 times slower than the double format, with the exact factor
depending on the particular computer platform, the compiler, and the compiler flags that
are used. If implemented in hardware, the quadruple format should executive in twice the
time that a double does [14].

Table 1. Base 2 IEEE 754-2008 formats.

type εm bits dps exec time
binary32 (single) 1.2 e − 7 32 7 1
binary64 (double) 2.2 e − 16 64 16 1
binary128 (quadruple) 3.8 e − 34 128 33 2 to 10

Table 2. Information on floating point types derived from the IEEE double and
implemented in software.

type bits εm dps exec time
double-double 128 4.9 e − 32 31 5 to 10
quad-double 256 1.2 e − 63 62 25 to 100

However, the algorithms for extended, but fixed, precision floating point systems are
many times more efficient than the algorithms for arbitrary precision floating point cal-
culations of comparable length. In our benchmarks, the C++ arbitrary precision package
available from [17] with the decimal precision set to 62 (the decimal precision of a quad-
double) runs 5 times slower than does the fixed quad-double precision code.

3 Runge–Kutta methods

For an autonomous system of ODEs, Runge–Kutta (RK) methods are of the form

yn+1 = yn + ∆t

s∑
i=1

biF (Yi) (2)

where the internal stages are determined by

Yi = yn + ∆t

s∑
j=1

aijF (Yj), i = 1, . . . , s, (3)

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 340–352



344 S.A. Sarra, C. Meador

and where s denotes the number of stages. If aij = 0 whenever i 6 j the method is
explicit and the equations (3) provide a recursion for computing each Yi in terms of the
proceeding stages. Otherwise, the method is implicit and the Yi need to be calculated
by solving a system of nonlinear algebraic equations. If the system of ODEs is stiff, the
nonlinear equations are typically solved by Newton’s method, or a variant of Newton’s
method, as described in [18, p. 118] in order to maintain the good stability properties of
the method. Otherwise, if stiffness is not an issue, the equations can be solved by a simple
fixed point iteration

Y
[k]
i = yn + ∆t

s∑
j=1

aijF
(
Y

[k−1]
j

)
, i = 1, . . . , s. (4)

The equations are iterated until the increment of two successive approximations satisfies
either

∆[k] = max
i=1,...,s

∥∥Y [k]
i − Y

[k−1]
i

∥∥
∞ 6 δ (5)

or ∆[k] > ∆[k−1] which indicates that the increments of the iteration start to oscillate due
to roundoff error [19]. The value of δ depends on the floating point system and is taken
to be a number slightly large than machine epsilon in the system. In double precision we
take δ = 1 e− 14, in double-double δ = 1 e− 28, and in quad-double δ = 1 e− 56. In all
cases, the iteration typically converges in 2 to 6 iterations.

Two particular RK methods are used in the numerical experiments. The first is an
eighth order explicit method with eleven stages. The a and b coefficients of the RK8
method are given in [20].

The second method, referred to as Gauss16, is an eight stage, sixteenth order, implicit
Gauss RK method. The Gauss RK methods (also known as Butcher–Kuntzmann RK
methods) are of order 2s and have the highest possible order of any RK method relative to
the number of stages [21]. The coefficients of Gauss RK methods of order 2, 4, 6, 8, and
10 are listed in [22]. We are unaware of any Gauss RK method that is higher than order
10 being described in the literature. This is most likely because using such a high order
method would be overkill when employed using double precision. With such a high order
method, reducing a moderately small step size any further would not further reduce the
overall error due to roundoff errors. However, we intend to use the method with extended
precision and have derived a sixteenth order method. The coefficients of the method are
listed with 65 decimal places of accuracy in the appendix.

4 Numerical results

The parameters in the system (1) have been set to σ = 10, b = 8/3, and r = 28 as these
have been considered by many other authors, for example [1, 4, 5]. The initial conditions
x0 = 1, y0 = −1, and z0 = 10 have been used. In all numerical runs, the solution
has been approximated from t = 0 to t = 100 and the numerical solutions have been
saved and plotted at intervals of 0.1, i.e. at times t = 0, 0.1, 0.2, . . . , 99.9, 100. Time step

www.mii.lt/NA



On the numerical solution of chaotic dynamical systems 345

size independent solutions are sought in the sense that solutions calculated with small
but different size time steps that have a maximum difference of less than a tolerance of
tol = 5 e−14. The RK8 and Gauss16 methods are used with three different floating point
types: double, double-double, and quad-double. We only discuss the x variable from the
system as the results for y and z are similar. With each numerical method and floating
point system, we seek a time step independent solution by refining the time-step in the
sequence ∆t = 1 e − 3, 1 e − 4, 1 e − 5, 1 e − 6, and 1 e − 7.

The double precision results are shown in Fig. 1. In the upper left image of the figure,
the ∆t = 1 e − 6 and ∆t = 1 e − 7 RK8 solutions visually agree to about t = 42. At
t = 0.1 when their difference is first measured, the two solutions differ by 9.8 e−14 which
exceeds the set tolerance. The double precision Gauss16 ∆t = 1 e − 6 and ∆t = 1 e − 7
solutions are compared in the lower images of Fig. 1. As was the case for the RK8 double
solutions, the two Gauss16 solutions visually agree to about t = 42. The two solutions

25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

t

x
(t

)

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

10
5

t

|x
∆

 t
 =

 1
e

−
7
 −

 x
∆

 t
 =

 1
e

−
6
|

25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

15

20

t

x
(t

)

0 10 20 30 40 50
10

−15

10
−10

10
−5

10
0

10
5

t

|x
∆

 t
 =

 1
e

−
7
 −

 x
∆

 t
 =

 1
e

−
6
|

Fig. 1. Double precision, ∆t = 1 e − 6 and ∆t = 1 e − 7. Upper: RK8. Lower:
Gauss16. Left: x(t) solutions visually agree until about t = 42 for both methods.

Right: logarithmic plot of the difference of the two solutions.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 340–352



346 S.A. Sarra, C. Meador

differ by more than the tolerance at t = 0.3. At first it may seem odd that the much more
accurate Gauss16 method does not produce time step independent solutions over a longer
period of time than does the RK8 methods. However, for such high order numerical
methods, the local truncation errors of both methods may be much smaller than machine
epsilon when even moderately small time steps are used. At this point, it is the lack of
accuracy and rounding errors in the floating point system that is preventing a longer time
period of agreement.

The double-double precision results with ∆t = 1 e−6 and ∆t = 1 e−7 are shown in
Fig. 2. In the upper images of the figure, the RK8 solutions are visually indistinguishable
up to about t = 78. The two RK8 numerical solutions agree to within the tolerance
through time t = 46.6. In the lower images, the Gauss16 solutions are also visually
indistinguishable up to about t = 78. The two Gauss16 numerical solutions agree to
within the tolerance through time t = 46.5.

70 75 80 85 90
−20

−15

−10

−5

0

5

10

15

20

t

x
(t

)

30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

t

|x
∆

 t
 =

 1
e
−

7
 −

 x
∆

 t
 =

 1
e
−

6
|

70 75 80 85 90
−20

−15

−10

−5

0

5

10

15

20

t

x
(t

)

30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

t

|x
∆

 t
 =

 1
e
−

7
 −

 x
∆

 t
 =

 1
e
−

6
|

Fig. 2. Double-double precision, ∆t = 1 e−6 and ∆t = 1 e−7. Upper: RK8. Lower:
Gauss16. Left: x(t) solutions visually agree until about t = 78 for both methods.

Right: logarithmic plot of the difference of the two solutions.

www.mii.lt/NA



On the numerical solution of chaotic dynamical systems 347

The quad-double precision RK8 results with ∆t = 1 e − 6 and ∆t = 1 e − 7 have a
maximum difference of 2.83 e−6. The solutions are visually indistinguishable to t = 100,
but only agree to within the tolerance through time t = 72.7. The time step size is halved
and another run is computed with ∆t = 5 e − 8 and compared to the ∆t = 1 e − 7
solution. The two solutions agree to within the tolerance to t = 100 which is the last time
their difference was measured. The two solutions agree to within the double precision
machine epsilon through time t = 96.6. The quad-double solution with ∆t = 1 e − 7 is
time step size independent up to t = 100.

The Gauss16 quad-double solutions with ∆t = 1 e − 3∆t = 1 e − 4 agree to within
the tolerance to t = 75.4. Reducing the size of the time step once more we find that the
Gauss16 quad-double solutions with ∆t = 1 e− 4∆t = 1 e− 5 not only agree within the
tolerance to t = 100 but agree to the 16 decimal places. Additionally, the solutions also
agree with the RK8 quad-double solutions to 16 decimal places.

The quad-double RK8 ∆t = 1 e − 7 and ∆t = 5 e − 8 and Gauss16 ∆t = 1 e − 4
and ∆t = 1 e − 5 all agree to within the tolerance up to t = 100. Additionally, the quad-
double RK8 ∆t = 5 e − 8 and Gauss16 ∆t = 1 e − 4 and ∆t = 1 e − 5 are in agreement
up to 16 decimals places to t = 100. This solution is taken as our time step independent
solution. The solution is plotted in Fig. 3 and is tabulated at intervals of t = 10 in Table 3.
In Table 4, the agreement with the time step independent solution and RK8 and Gauss16
in double-double and double precision with ∆t = 1 e − 7 is listed.

70 75 80 85 90 95 100
−20

−15

−10

−5

0

5

10

15

20

t

x
(t

)

Fig. 3. The time step size independent (16 decimal places) x(t) solution.

Another number that was recorded in all numerical runs was the maximum absolute
value of x(t) over the time interval [0, 100]. To fifteen decimal places, all RK8 double-
double, and quad-double runs with ∆t = 1 e − 5 to 5 e − 8 agree that

max
t∈[0,100]

∣∣x(t)
∣∣ = 18.422269920984803. (6)

All Gauss16 runs with double-double and ∆t = 1 e − 4 to 1 e − 7 and quad-double runs
with ∆t = 1 e−2 to 1 e−5 agree with the above number to fifteen decimal places as well.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 340–352



348 S.A. Sarra, C. Meador

Table 3. Time step independent solutions computed with quad-double precision and
Gauss16 with ∆t = 1 e − 4 and RK8 with ∆t = 5 e − 8.

t x(t)

10 6.0522357030842335
20 3.0798989869880050
30 −7.5894934859019713
40 6.7582931863137214
50 1.4275216839127140
60 −4.9386364320497773
70 14.0746063398783966
80 −1.4271159848437984
90 −12.6554314800994861

100 −14.2975549270969643

Table 4. The agreement with the time step independent solutions of RK8 and Gauss16
in double-double and double precision with ∆t = 1 e − 7.

t RK8-dd Gauss8-dd RK8-d Gauss16-d
10 6.0522357030842 6.0522357030842335 6.052235703 6.052235703
20 3.0798989869880 3.0798989869880050 3.079898 3.079898
30 −7.5894934859019 −7.5894934859019713 −7.589 −7.589
40 6.7582931863137 6.7582931863137214 6 6
50 1.42752168391 1.42752168391 − −
60 −4.93863643 −4.9386364 − −
70 14.0746 14.0746 − −
80 − − − −
90 − − − −

100 − − − −

5 Conclusions

Using quad-double floating point arithmetic, we have calculated time step independent
solutions up to t = 100 with two different numerical methods, an eighth order explicit
Runge–Kutta method and a sixteenth order implicit Runge–Kutta method that agree to 16
decimal places. The solutions may serve as benchmarks in other numerical studies.

Calculating numerical solutions of chaotic dynamical systems that are time step in-
dependent over long time periods remains a challenging problem when using computer
technology that is currently available. Standard double precision floating point number
systems are not adequate for this purpose. A quadruple precision type has been added
to the IEEE 754 standard that was revised in 2008. However, to date, the quadruple
type has not been implemented in hardware or software. Software packages are available
that implement double-double and quad-double floating point arithmetic that offer two
and four times more decimal precision than the double type. A performance penalty is
incurred in using software floating point systems, however the fixed extended types are

www.mii.lt/NA



On the numerical solution of chaotic dynamical systems 349

more efficient than the arbitrary precision extended types where the decimal precision
is user specified. Although not yet available, it is possible to extend the quad-double
algorithms [23] to develop floating point systems that have 8 or 16 times the decimal
precision of an IEEE double. These more precise floating point systems will be necessary
for obtaining time-step independent numerical solutions over longer time periods.

Despite employing very precise floating point number systems and very high order
numerical methods, we were unable to compute time step size independent solutions
significantly beyond t = 100, which cannot be considered a large time in computational
chaos. If even more precise floating point numbers systems than quad-double were used
with even higher order numerical methods, this finite interval of time step independent
solutions could be extended. However, extending the finite interval to an infinite interval
is impossible due to the chaotic nature of the true solution.

As the numerical experiments that have been presented in this work were being com-
pleted, the authors became aware of emerging technology that potentially make comput-
ing with the quad-double software hundreds of times faster. In [24] the authors describe a
port of the quad-double package that runs on general purpose graphics processor units
(gpgpus). The software is freely available from http://code.google.com/p/
gpuprec/. In benchmarks, the gpgpu based quad-double package ran up to 27 times
faster than the cpu quad-double code. The gpgpu benchmarks were made using the
Nvidia 280. Modern gpgpus such as the Nvidia Tesla M2070 claim to offer float point
operations that are up to 250 times faster than their cpu based counterparts. The new
gpgpu technology and the gpgpu based quad-double package should allow numerical ex-
periments, such as we have conducted in this work, to be performed much more efficiently
than can be done with a computer with only cpus.

Appendix: Guass16 coefficients

The coefficients of an implicit 8 stage Gauss Runge–Kutta that is sixteenth order. The
coefficients are accurate to 65 decimal places.

a11 = 0.02530713407259406478813283857749054752884852276292123926475092451
a12 =−0.00910594330597007502136365210466435047311727247329686429348623586
a13 = 0.00628083114703047398060942073780759795425835837630513188342322651
a14 =−0.00448301561305475144191331423530154814759060916601139302291525611
a15 = 0.00307849136832677988985383064911711520660902030167881370070945660
a16 =−0.00191767525463695234092563511949443856406448938308696350163298304
a17 = 0.00097275766405926352672452382408879049469704902923380238603885837
a18 =−0.00027750832711691922289844661378020921375819659846978555270787967

a21 = 0.05475932176755432028319079738500224826875804364551005181082369257
a22 = 0.05559525861334361763608899860656022110753271751281239118147732232
a23 =−0.01363979623578166925303066206997609224706802524286906257283418117
a24 = 0.00814970885836055053604042748372916326835822162190620014144182926
a25 =−0.00521535208914715338024336977463764924493120237090829212634876753
a26 = 0.00313975298546366894234500690115627265289471620756235358210242980

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 340–352



350 S.A. Sarra, C. Meador

a27 =−0.00156493491094894237579511140443043454693422650166514567168147496
a28 = 0.00044280230434223781562694463468105232280388931966908761993400219

a31 = 0.04858753599891288094316014734743885745625614201333994426404020094
a32 = 0.12085952499717316744165374300348485377887792061396792806062120607
a33 = 0.07842666146947182183449055049665032831508224975068373442256598626
a34 =−0.01597510336187843147567011385569651343428866826004589980387830362
a35 = 0.00837173272022616378691032206439061467670572012238163428187991288
a36 =−0.00464346586210447979012617007024473073788065378785656721211938560
a37 = 0.00222571477528489971831530140789318479957698318588276219817862214
a38 =−0.00061880569525051536760330498853976937531181519854996508671678873

a41 = 0.05186552097058123456531207796496692699577807729965268252186029215
a42 = 0.10619349014834840687886945008258241588778041538431551297916346689
a43 = 0.17067113427455362128471078460399407590399126470854040670372947278
a44 = 0.09067094584459049574128761231929890304853650997358263513120576689
a45 =−0.01602104132102501316870521779380082716174561379583905402608604165
a46 = 0.00724120656122226986180306301493880973632538238413779187600040811
a47 =−0.00319781431036077032248274309542092890356476150527201930790883803
a48 = 0.00085923658426485268946690172334863415951981909439515296344123599

a51 = 0.04975503156092327688679877543163246089817722643144732556606061303
a52 = 0.11438833153704800559466074030854137111863019653089680167086348268
a53 = 0.14961211637772137380717803797836184689383911711722967696913156442
a54 = 0.19736293301020600465128044243239863325881863374300432428849757543
a55 = a44

a56 =−0.01381781133560997761572968361069341927382676520717293785859750024
a57 = 0.00499702707833882839330854713053802632728501964130926938379117774
a58 =−0.00125125282539310498904640080998583193808103177381020399235844312

a61 = 0.05123307384043864494386898214352086443300886072439244361621863776
a62 = 0.10896480245140233555386269580522725741548845183974202016477602249
a63 = 0.16149678880104812345910727106354538736804515328922403605725135813
a64 = 0.17297015896895482769566490257420719142036729982478363598053162089
a65 = 0.19731699505105942295824533849429431953136168820721117006628983741
a66 = a33

a67 =−0.00966900777048593216947574579036441156381248558834314569766656142
a68 = 0.00202673214627524863310552980754223760144090351250253426546164808

a71 = 0.05017146584084589176063873252030004273489315620617339090956784684
a72 = 0.11275545213763617764797310861755087676199966152728992803463611960
a73 = 0.15371356995347997472663609409214438397726978329380511526302954273
a74 = 0.18655724377832814486281859441323545534200422231807356238876030132
a75 = 0.17319218283082044094653479715486864282871479832525907012096970452
a76 = 0.17049311917472531292201176306327674887723252474423653141796615371
a77 = a22

a78 =−0.00414505362236619070692512023002115321106099811966757328132184354

a81 = 0.050891776472305048799164123768761304271455242124312264082209728707
a82 = 0.110217759562627971745453473389031651720368385996390979976915786275

www.mii.lt/NA



On the numerical solution of chaotic dynamical systems 351

a83 = 0.158770998193580596009906736112795095194228988884454432346764955579
a84 = 0.178263400320854211592721393989480690890463999645486456561702077174
a85 = 0.185824907302235742924488538873899354244663629113176663285326789898
a86 = 0.150572491791913169688371680255493058675906141125062336961708746019
a87 = 0.120296460532657310293541649317784792688182707498921646656440880515
a88 = a11

b1 = 0.050614268145188129576265677154981095057697045525842478529501849032
b2 = 0.111190517226687235272177997213120442215065435025624782362954644646
b3 = 0.156853322938943643668981100993300656630164499501367468845131972537
b4 = 0.181341891689180991482575224638597806097073019947165270262411533783
b5 = b4
b6 = b3
b7 = b2
b8 = b1

References

1. E. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences, 20, pp. 130–141,
1963.

2. S.H. Strogatz, Nonlinear Dynamics and Chaos, Westview Press, 1994.

3. L.-S. Yao, Is a direct numerical simulation of chaos possiblle? A study of a model nonlinearity,
Int. J. Heat Mass Transfer, 50, pp. 2200–2207, 2007.

4. L.-S. Yao, Computed chaos or numerical errors, textitNonlinear Anal. Model. Control, 15(1),
pp. 109–126, 2010.

5. J. Teixeira, C. Reynolds, K. Judd, Time step sensity of nonlinear atmospheric models:
Numerical convergence, truncation error growth, and ensemble design, Jornal of the Atmo-
spheric Sciences, 64, pp. 175–189, 2007.

6. L.-S. Yao, D. Hughes, Comment on “Time step sensitivity of nonlinear atmospheric models:
Numerical convergence, truncation error growth, and ensemble design” by J. Teixeira,
C. Reynolds, K. Judd, Journal of the Atmospheric Sciences, 65, pp. 681–682, 2008.

7. S. Liao, On the reliability of computed chaotic solutions of non-linear differential equations,
Tellus A, 61(4), pp. 550–564, 2009.

8. E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems,
Springer Ser. Comput. Math., Vol. 1, Springer, 2000.

9. T.S. Parker, L.O. Chua, Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag,
New York, 1989.

10. K. Mishaikow, M. Mrozek, Chaos in Lorenz equations: A computer assisted proof, Bull. Am.
Math. Soc., 32(1), pp. 66–72, 1995.

11. P. Zgliczynski, Fixed point index for iterations of maps, topological horseshoe and chaos,
Topol. Methods Nonlinear Anal., 8, pp. 169–177, 1996.

12. D.H. Bailey, High-precision arithmetic in scientific computation, Comput. Sci. Eng., 7(3),
pp. 54–61, 2005.

Nonlinear Anal. Model. Control, 2011, Vol. 16, No. 3, 340–352



352 S.A. Sarra, C. Meador

13. S.A. Sarra, Radial basis function approximation methods with extended precision floating point
arithmetic, Eng. Anal. Bound. Elem., 35(1), pp. 68–76, 2011.

14. F. de Dinechin, G. Villard, High precision numerical accuracy in physics research, Nucl.
Instrum. Meth. A, 559, pp. 207–210, 2006.

15. J.-M. Muller et all., Handbook of Floating-Point Arithmetic, Birkhäuser, Boston, 2010.

16. M. Overton, Numerical Computing with IEEE Floating Point Arithmetic, SIAM, 2001.

17. D. Bailey, Y. Hida, X. Li, B. Thompson, High precision software, http://crd.lbl.gov/
∼dhbailey/mpdist/.

18. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-
Algebraic Problems, Springer Ser. Comput. Math., Vol. 14, Springer, 2000.

19. E. Hairer, R.I. McLachlan, A. Razakarivony, Achieving Brouwer’s law with implicit Runge–
Kutta methods, BIT, 48(2), pp. 231–243, 2008.

20. G.J. Cooper, J.H. Verner, Some explicit Runge–Kutta methods of high order, SIAM J. Numer.
Anal., 9(3), pp. 389–405, 1972.

21. J. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2003.

22. J.C. Butcher, Implicit Runge-Kutta processes, Math. Comput., 18(85), pp. 50–64, 1964.

23. Y. Hida, X.S. Li, D.H. Bailey, Algorithms for quad-double precision floating point arithmetic,
in: Proceedings of the 15th IEEE Symposium on Computer Arithmetic, IEEE Computer Society,
pp. 155–162, 2001.

24. M. Lu, B. He, Q. Luo, Supporting extended precision on graphics processors, in: Proceedings
of the Sixth International Workshop on Data Management on New Hardware, DaMoN’10,
pp. 19–26, 2010.

www.mii.lt/NA


