3 research outputs found

    Distribution-based Regression for Count and Semi-Bounded Data

    Get PDF
    Data mining techniques have been successfully utilized in different applications of significant fields, including pattern recognition, computer vision, medical researches, etc. With the wealth of data generated every day, there is a lack of practical analysis tools to discover hidden relationships and trends. Among all statistical frameworks, regression has been proven to be one of the most strong tools in prediction. The complexity of data that is unfavorable for most models is a considerable challenge in prediction. The ability of a model to perform accurately and efficiently is extremely important. Thus, a model must be selected to fit the data well, such that the learning from previous data is efficient and highly accurate. This work is motivated by the limited number of regression analysis tools for multivariate count data in the literature. We propose two regression models for count data based on flexible distributions, namely, the multinomial Beta-Liouville and multinomial scaled Dirichlet, and evaluate them in the problem of disease diagnosis. The performance is measured based on the accuracy of the prediction, which depends on the nature and complexity of the dataset. Our results show the efficiency of the two proposed regression models where the prediction performance of both models is competitive to other previously used regression approaches for count data and to the best results in the literature. Then, we propose three regression models for positive vectors based on flexible distributions for semi-bounded data, namely, inverted Dirichlet, inverted generalize Dirichlet, and inverted Beta-Liouville. The efficiency of these models is tested via real-world applications, including software defects prediction, spam filtering, and disease diagnosis. Our results show that the performance of the three proposed regression models is better than other commonly used regression models

    Human face detection techniques: A comprehensive review and future research directions

    Get PDF
    Face detection which is an effortless task for humans are complex to perform on machines. Recent veer proliferation of computational resources are paving the way for a frantic advancement of face detection technology. Many astutely developed algorithms have been proposed to detect faces. However, there is a little heed paid in making a comprehensive survey of the available algorithms. This paper aims at providing fourfold discussions on face detection algorithms. At first, we explore a wide variety of available face detection algorithms in five steps including history, working procedure, advantages, limitations, and use in other fields alongside face detection. Secondly, we include a comparative evaluation among different algorithms in each single method. Thirdly, we provide detailed comparisons among the algorithms epitomized to have an all inclusive outlook. Lastly, we conclude this study with several promising research directions to pursue. Earlier survey papers on face detection algorithms are limited to just technical details and popularly used algorithms. In our study, however, we cover detailed technical explanations of face detection algorithms and various recent sub-branches of neural network. We present detailed comparisons among the algorithms in all-inclusive and also under sub-branches. We provide strengths and limitations of these algorithms and a novel literature survey including their use besides face detection
    corecore