2,961 research outputs found

    Loop Calculus in Statistical Physics and Information Science

    Full text link
    Considering a discrete and finite statistical model of a general position we introduce an exact expression for the partition function in terms of a finite series. The leading term in the series is the Bethe-Peierls (Belief Propagation)-BP contribution, the rest are expressed as loop-contributions on the factor graph and calculated directly using the BP solution. The series unveils a small parameter that often makes the BP approximation so successful. Applications of the loop calculus in statistical physics and information science are discussed.Comment: 4 pages, submitted to Phys.Rev.Lett. Changes: More general model, Simpler derivatio

    Optimal Quantization for Compressive Sensing under Message Passing Reconstruction

    Get PDF
    We consider the optimal quantization of compressive sensing measurements following the work on generalization of relaxed belief propagation (BP) for arbitrary measurement channels. Relaxed BP is an iterative reconstruction scheme inspired by message passing algorithms on bipartite graphs. Its asymptotic error performance can be accurately predicted and tracked through the state evolution formalism. We utilize these results to design mean-square optimal scalar quantizers for relaxed BP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.Comment: 5 pages, 3 figures, submitted to IEEE International Symposium on Information Theory (ISIT) 2011; minor corrections in v

    Statistical Mechanical Approach to Lossy Data Compression:Theory and Practice

    Full text link
    The encoder and decoder for lossy data compression of binary memoryless sources are developed on the basis of a specific-type nonmonotonic perceptron. Statistical mechanical analysis indicates that the potential ability of the perceptron-based code saturates the theoretically achievable limit in most cases although exactly performing the compression is computationally difficult. To resolve this difficulty, we provide a computationally tractable approximation algorithm using belief propagation (BP), which is a current standard algorithm of probabilistic inference. Introducing several approximations and heuristics, the BP-based algorithm exhibits performance that is close to the achievable limit in a practical time scale in optimal cases.Comment: 10 pages, 2 figures, REVTEX preprin
    • …
    corecore