5 research outputs found

    Belief Propagation on replica symmetric random factor graph models

    Get PDF
    According to physics predictions, the free energy of random factor graph models that satisfy a certain "static replica symmetry" condition can be calculated via the Belief Propagation message passing scheme [Krzakala et al., PNAS 2007]. Here we prove this conjecture for two general classes of random factor graph models, namely Poisson random factor graphs and random regular factor graphs. Specifically, we show that the messages constructed just as in the case of acyclic factor graphs asymptotically satisfy the Belief Propagation equations and that the free energy density is given by the Bethe free energy formula

    An improved Belief Propagation algorithm finds many Bethe states in the random field Ising model on random graphs

    Full text link
    We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of maximal solutions for the BP equations and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the maximal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one side this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other side we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions on the physics of this class of models.Comment: 20 pages, 8 figure

    The number of solutions for random regular NAE-SAT

    Full text link
    Recent work has made substantial progress in understanding the transitions of random constraint satisfaction problems. In particular, for several of these models, the exact satisfiability threshold has been rigorously determined, confirming predictions of statistical physics. Here we revisit one of these models, random regular k-NAE-SAT: knowing the satisfiability threshold, it is natural to study, in the satisfiable regime, the number of solutions in a typical instance. We prove here that these solutions have a well-defined free energy (limiting exponential growth rate), with explicit value matching the one-step replica symmetry breaking prediction. The proof develops new techniques for analyzing a certain "survey propagation model" associated to this problem. We believe that these methods may be applicable in a wide class of related problems

    Belief Propagation on the random kk-SAT model

    Full text link
    Corroborating a prediction from statistical physics, we prove that the Belief Propagation message passing algorithm approximates the partition function of the random kk-SAT model well for all clause/variable densities and all inverse temperatures for which a modest absence of long-range correlations condition is satisfied. This condition is known as "replica symmetry" in physics language. From this result we deduce that a replica symmetry breaking phase transition occurs in the random kk-SAT model at low temperature for clause/variable densities below but close to the satisfiability threshold
    corecore