1,342 research outputs found

    Belief Propagation on replica symmetric random factor graph models

    Get PDF
    According to physics predictions, the free energy of random factor graph models that satisfy a certain "static replica symmetry" condition can be calculated via the Belief Propagation message passing scheme [Krzakala et al., PNAS 2007]. Here we prove this conjecture for two general classes of random factor graph models, namely Poisson random factor graphs and random regular factor graphs. Specifically, we show that the messages constructed just as in the case of acyclic factor graphs asymptotically satisfy the Belief Propagation equations and that the free energy density is given by the Bethe free energy formula

    An improved Belief Propagation algorithm finds many Bethe states in the random field Ising model on random graphs

    Full text link
    We first present an empirical study of the Belief Propagation (BP) algorithm, when run on the random field Ising model defined on random regular graphs in the zero temperature limit. We introduce the notion of maximal solutions for the BP equations and we use them to fix a fraction of spins in their ground state configuration. At the phase transition point the fraction of unconstrained spins percolates and their number diverges with the system size. This in turn makes the associated optimization problem highly non trivial in the critical region. Using the bounds on the BP messages provided by the maximal solutions we design a new and very easy to implement BP scheme which is able to output a large number of stable fixed points. On one side this new algorithm is able to provide the minimum energy configuration with high probability in a competitive time. On the other side we found that the number of fixed points of the BP algorithm grows with the system size in the critical region. This unexpected feature poses new relevant questions on the physics of this class of models.Comment: 20 pages, 8 figure

    Survey propagation at finite temperature: application to a Sourlas code as a toy model

    Full text link
    In this paper we investigate a finite temperature generalization of survey propagation, by applying it to the problem of finite temperature decoding of a biased finite connectivity Sourlas code for temperatures lower than the Nishimori temperature. We observe that the result is a shift of the location of the dynamical critical channel noise to larger values than the corresponding dynamical transition for belief propagation, as suggested recently by Migliorini and Saad for LDPC codes. We show how the finite temperature 1-RSB SP gives accurate results in the regime where competing approaches fail to converge or fail to recover the retrieval state

    The number of matchings in random graphs

    Full text link
    We study matchings on sparse random graphs by means of the cavity method. We first show how the method reproduces several known results about maximum and perfect matchings in regular and Erdos-Renyi random graphs. Our main new result is the computation of the entropy, i.e. the leading order of the logarithm of the number of solutions, of matchings with a given size. We derive both an algorithm to compute this entropy for an arbitrary graph with a girth that diverges in the large size limit, and an analytic result for the entropy in regular and Erdos-Renyi random graph ensembles.Comment: 17 pages, 6 figures, to be published in Journal of Statistical Mechanic
    • …
    corecore