717,727 research outputs found
Exponential beams of electromagnetic radiation
We show that in addition to well known Bessel, Hermite-Gauss, and
Laguerre-Gauss beams of electromagnetic radiation, one may also construct
exponential beams. These beams are characterized by a fall-off in the
transverse direction described by an exponential function of rho. Exponential
beams, like Bessel beams, carry definite angular momentum and are periodic
along the direction of propagation, but unlike Bessel beams they have a finite
energy per unit beam length. The analysis of these beams is greatly simplified
by an extensive use of the Riemann-Silberstein vector and the Whittaker
representation of the solutions of the Maxwell equations in terms of just one
complex function. The connection between the Bessel beams and the exponential
beams is made explicit by constructing the exponential beams as wave packets of
Bessel beams.Comment: Dedicated to the memory of Edwin Powe
Higher-order moments and overlaps of Cartesian beams
We introduce a closed-form expression for the overlap between two different Cartesian beams. In the course of obtaining this expression, we establish a linear relation between the overlap of circular beams with azimuthal symmetry and the overlap of Cartesian beams such that the knowledge of the former allows the latter to be calculated very easily. Our formalism can be easily applied to calculate relevant beam parameters such as the normalization constants, the M2 factors, the kurtosis parameters, the expansion coefficients of Cartesian beams, and therefore of all their relevant special cases, including the standard, elegant, and generalized Hermite–Gaussian beams, cosh-Gaussian beams, Lorentz beams, and Airy beams, among others
Recommended from our members
Influence of section depth on the structural behaviour of reinforced concrete continuous deep beams
YesAlthough the depth of reinforced concrete deep beams is much higher than that of slender beams, extensive existing
tests on deep beams have focused on simply supported beams with a scaled depth below 600 mm. In the present
paper, test results of 12 two-span reinforced concrete deep beams are reported. The main parameters investigated
were the beam depth, which is varied from 400 mm to 720 mm, concrete compressive strength and shear span-tooverall
depth ratio. All beams had the same longitudinal top and bottom reinforcement and no web reinforcement to
assess the effect of changing the beam depth on the shear strength of such beams. All beams tested failed owing to
a significant diagonal crack connecting the edges of the load and intermediate support plates. The influence of
beam depth on shear strength was more pronounced on continuous deep beams than simple ones and on beams
having higher concrete compressive strength. A numerical technique based on the upper bound analysis of the
plasticity theory was developed to assess the load capacity of continuous deep beams. The influence of the beam
depth was covered by the effectiveness factor of concrete in compression to cater for size effect. Comparisons
between the total capacity from the proposed technique and that experimentally measured in the current investigation
and elsewhere show good agreement, even though the section depth of beams is varied
Observation of accelerating parabolic beams
We report the first observation of accelerating parabolic beams. These accelerating parabolic beams are similar to the Airy beams because they exhibit the unusual ability to remain diffraction-free while having a quadratic transverse shift during propagation. The amplitude and phase masks required to generate these beams are encoded onto a single liquid crystal display. Experimental results agree well with theory
Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories
We experimentally demonstrate self-accelerating Bessel-like optical beams propagating along arbitrary trajectories in free space. With computer generated holography, such beams are designed to follow different controllable trajectories while their main lobe transverse profiles remain nearly invariant and symmetric. Examples include parabolic, snake-like, hyperbolic, hyperbolic secant, and even three-dimensional spiraling trajectories. The self-healing property of such beams is also demonstrated. This new class of optical beams can be considered as a hybrid between accelerating and non-accelerating nondiffracting beams that may find a variety of applications
- …
