717,727 research outputs found

    One Thousand North

    Get PDF

    Exponential beams of electromagnetic radiation

    Get PDF
    We show that in addition to well known Bessel, Hermite-Gauss, and Laguerre-Gauss beams of electromagnetic radiation, one may also construct exponential beams. These beams are characterized by a fall-off in the transverse direction described by an exponential function of rho. Exponential beams, like Bessel beams, carry definite angular momentum and are periodic along the direction of propagation, but unlike Bessel beams they have a finite energy per unit beam length. The analysis of these beams is greatly simplified by an extensive use of the Riemann-Silberstein vector and the Whittaker representation of the solutions of the Maxwell equations in terms of just one complex function. The connection between the Bessel beams and the exponential beams is made explicit by constructing the exponential beams as wave packets of Bessel beams.Comment: Dedicated to the memory of Edwin Powe

    Higher-order moments and overlaps of Cartesian beams

    Get PDF
    We introduce a closed-form expression for the overlap between two different Cartesian beams. In the course of obtaining this expression, we establish a linear relation between the overlap of circular beams with azimuthal symmetry and the overlap of Cartesian beams such that the knowledge of the former allows the latter to be calculated very easily. Our formalism can be easily applied to calculate relevant beam parameters such as the normalization constants, the M2 factors, the kurtosis parameters, the expansion coefficients of Cartesian beams, and therefore of all their relevant special cases, including the standard, elegant, and generalized Hermite–Gaussian beams, cosh-Gaussian beams, Lorentz beams, and Airy beams, among others

    Observation of accelerating parabolic beams

    Get PDF
    We report the first observation of accelerating parabolic beams. These accelerating parabolic beams are similar to the Airy beams because they exhibit the unusual ability to remain diffraction-free while having a quadratic transverse shift during propagation. The amplitude and phase masks required to generate these beams are encoded onto a single liquid crystal display. Experimental results agree well with theory

    Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories

    Get PDF
    We experimentally demonstrate self-accelerating Bessel-like optical beams propagating along arbitrary trajectories in free space. With computer generated holography, such beams are designed to follow different controllable trajectories while their main lobe transverse profiles remain nearly invariant and symmetric. Examples include parabolic, snake-like, hyperbolic, hyperbolic secant, and even three-dimensional spiraling trajectories. The self-healing property of such beams is also demonstrated. This new class of optical beams can be considered as a hybrid between accelerating and non-accelerating nondiffracting beams that may find a variety of applications
    corecore