174 research outputs found

    Millimeter Wave Beam Alignment: Large Deviations Analysis and Design Insights

    Full text link
    In millimeter wave cellular communication, fast and reliable beam alignment via beam training is crucial to harvest sufficient beamforming gain for the subsequent data transmission. In this paper, we establish fundamental limits in beam-alignment performance under both the exhaustive search and the hierarchical search that adopts multi-resolution beamforming codebooks, accounting for time-domain training overhead. Specifically, we derive lower and upper bounds on the probability of misalignment for an arbitrary level in the hierarchical search, based on a single-path channel model. Using the method of large deviations, we characterize the decay rate functions of both bounds and show that the bounds coincide as the training sequence length goes large. We go on to characterize the asymptotic misalignment probability of both the hierarchical and exhaustive search, and show that the latter asymptotically outperforms the former, subject to the same training overhead and codebook resolution. We show via numerical results that this relative performance behavior holds in the non-asymptotic regime. Moreover, the exhaustive search is shown to achieve significantly higher worst-case spectrum efficiency than the hierarchical search, when the pre-beamforming signal-to-noise ratio (SNR) is relatively low. This study hence implies that the exhaustive search is more effective for users situated further from base stations, as they tend to have low SNR.Comment: Author final manuscript, to appear in IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Millimeter Wave Communications for Future Mobile Networks, 2017 (corresponding author: Min Li

    Uplink Beam Management for Millimeter Wave Cellular MIMO Systems with Hybrid Beamforming

    Full text link
    Hybrid analog and digital BeamForming (HBF) is one of the enabling transceiver technologies for millimeter Wave (mmWave) Multiple Input Multiple Output (MIMO) systems. This technology offers highly directional communication, which is able to confront the intrinsic characteristics of mmWave signal propagation. However, the small coherence time in mmWave systems, especially under mobility conditions, renders efficient Beam Management (BM) in standalone mmWave communication a very difficult task. In this paper, we consider HBF transceivers with planar antenna panels and design a multi-level beam codebook for the analog beamformer comprising flat top beams with variable widths. These beams exhibit an almost constant array gain for the whole desired angle width, thereby facilitating efficient hierarchical BM. Focusing on the uplink communication, we present a novel beam training algorithm with dynamic beam ordering, which is suitable for the stringent latency requirements of the latest mmWave standard discussions. Our simulation results showcase the latency performance improvement and received signal-to-noise ratio with different variations of the proposed scheme over the optimum beam training scheme based on exhaustive narrow beam search.Comment: 7 pages; 6 figures; accepted to an IEEE conferenc

    Hierarchical Beamforming: Resource Allocation, Fairness and Flow Level Performance

    Full text link
    We consider hierarchical beamforming in wireless networks. For a given population of flows, we propose computationally efficient algorithms for fair rate allocation including proportional fairness and max-min fairness. We next propose closed-form formulas for flow level performance, for both elastic (with either proportional fairness and max-min fairness) and streaming traffic. We further assess the performance of hierarchical beamforming using numerical experiments. Since the proposed solutions have low complexity compared to conventional beamforming, our work suggests that hierarchical beamforming is a promising candidate for the implementation of beamforming in future cellular networks.Comment: 34 page
    • …
    corecore