15,214 research outputs found

    DDH-MAC: a novel dynamic de-centralized hybrid MAC protocol for cognitive radio networks

    Get PDF
    The radio spectrum (3kHz - 300GHz) has become saturated and proven to be insufficient to address the proliferation of new wireless applications. Cognitive Radio Technology which is an opportunistic network and is equipped with fully programmable wireless devices that empowers the network by OODA cycle and then make intelligent decisions by adapting their MAC and physical layer characteristics such as waveform, has appeared to be the only solution for current low spectrum availability and under utilization problem. In this paper a novel Dynamic De-Centralized Hybrid “DDH-MAC” protocol for Cognitive Radio Networks has been presented which lies between Global Common Control Channel (GCCC) and non-GCCC categories of cognitive radio MAC protocols. DDH-MAC is equipped with the best features of GCCC MAC protocols but also overcomes the saturation and security issues in GCCC. To the best of authors' knowledge, DDH-MAC is the first protocol which is hybrid between GCCC and non-GCCC family of protocols. DDH-MAC provides multiple levels of security and partially use GCCC to transmit beacon which sets and announces local control channel for exchange of free channel list (FCL) sensed by the co-operatively communicating cognitive radio nodes, subsequently providing secure transactions among participating nodes over the decided local control channel. This paper describes the framework of the DDH-MAC protocol in addition to its pseudo code for implementation; it is shown that the pre-transmission time for DDH-MAC is on average 20% better while compared to other cognitive radio MAC protocols

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    Joint Cooperative Spectrum Sensing and MAC Protocol Design for Multi-channel Cognitive Radio Networks

    Get PDF
    In this paper, we propose a semi-distributed cooperative spectrum sen sing (SDCSS) and channel access framework for multi-channel cognitive radio networks (CRNs). In particular, we c onsider a SDCSS scheme where secondary users (SUs) perform sensing and exchange sensing outcomes with ea ch other to locate spectrum holes. In addition, we devise the p -persistent CSMA-based cognitive MAC protocol integrating the SDCSS to enable efficient spectrum sharing among SUs. We then perform throughput analysis and develop an algorithm to determine the spectrum sensing and access parameters to maximize the throughput for a given allocation of channel sensing sets. Moreover, we consider the spectrum sensing set optimization problem for SUs to maxim ize the overall system throughput. We present both exhaustive search and low-complexity greedy algorithms to determine the sensing sets for SUs and analyze their complexity. We also show how our design and analysis can be extended to consider reporting errors. Finally, extensive numerical results are presented to demonstrate the sig nificant performance gain of our optimized design framework with respect to non-optimized designs as well as the imp acts of different protocol parameters on the throughput performance.Comment: accepted for publication EURASIP Journal on Wireless Communications and Networking, 201

    CR-MAC: A multichannel MAC protocol for cognitive radio ad hoc networks

    Full text link
    This paper proposes a cross-layer based cognitive radio multichannel medium access control (MAC) protocol with TDMA, which integrate the spectrum sensing at physical (PHY) layer and the packet scheduling at MAC layer, for the ad hoc wireless networks. The IEEE 802.11 standard allows for the use of multiple channels available at the PHY layer, but its MAC protocol is designed only for a single channel. A single channel MAC protocol does not work well in a multichannel environment, because of the multichannel hidden terminal problem. Our proposed protocol enables secondary users (SUs) to utilize multiple channels by switching channels dynamically, thus increasing network throughput. In our proposed protocol, each SU is equipped with only one spectrum agile transceiver, but solves the multichannel hidden terminal problem using temporal synchronization. The proposed cognitive radio MAC (CR-MAC) protocol allows SUs to identify and use the unused frequency spectrum in a way that constrains the level of interference to the primary users (PUs). Our scheme improves network throughput significantly, especially when the network is highly congested. The simulation results show that our proposed CR-MAC protocol successfully exploits multiple channels and significantly improves network performance by using the licensed spectrum band opportunistically and protects PUs from interference, even in hidden terminal situations.Comment: 14 Pages, International Journa

    Spectrum sharing and cognitive radio

    Get PDF

    An Energy Efficient Multichannel MAC Protocol for Cognitive Radio Ad Hoc Networks

    Full text link
    This paper presents a TDMA based energy efficient cognitive radio multichannel medium access control (MAC) protocol called ECR-MAC for wireless Ad Hoc Networks. ECR-MAC requires only a single half-duplex radio transceiver on each node that integrates the spectrum sensing at physical (PHY) layer and the packet scheduling at MAC layer. In addition to explicit frequency negotiation which is adopted by conventional multichannel MAC protocols, ECR-MAC introduces lightweight explicit time negotiation. This two-dimensional negotiation enables ECR-MAC to exploit the advantage of both multiple channels and TDMA, and achieve aggressive power savings by allowing nodes that are not involved in communication to go into doze mode. The IEEE 802.11 standard allows for the use of multiple channels available at the PHY layer, but its MAC protocol is designed only for a single channel. A single channel MAC protocol does not work well in a multichannel environment, because of the multichannel hidden terminal problem. The proposed energy efficient ECR-MAC protocol allows SUs to identify and use the unused frequency spectrum in a way that constrains the level of interference to the primary users (PUs). Extensive simulation results show that our proposed ECR-MAC protocol successfully exploits multiple channels and significantly improves network performance by using the licensed spectrum band opportunistically and protects QoS provisioning over cognitive radio ad hoc networks.Comment: 8 Pages, International Journa

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities
    • …
    corecore