289,763 research outputs found

    Consistency of Bayesian procedures for variable selection

    Full text link
    It has long been known that for the comparison of pairwise nested models, a decision based on the Bayes factor produces a consistent model selector (in the frequentist sense). Here we go beyond the usual consistency for nested pairwise models, and show that for a wide class of prior distributions, including intrinsic priors, the corresponding Bayesian procedure for variable selection in normal regression is consistent in the entire class of normal linear models. We find that the asymptotics of the Bayes factors for intrinsic priors are equivalent to those of the Schwarz (BIC) criterion. Also, recall that the Jeffreys--Lindley paradox refers to the well-known fact that a point null hypothesis on the normal mean parameter is always accepted when the variance of the conjugate prior goes to infinity. This implies that some limiting forms of proper prior distributions are not necessarily suitable for testing problems. Intrinsic priors are limits of proper prior distributions, and for finite sample sizes they have been proved to behave extremely well for variable selection in regression; a consequence of our results is that for intrinsic priors Lindley's paradox does not arise.Comment: Published in at http://dx.doi.org/10.1214/08-AOS606 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem

    Get PDF
    This paper studies the multiplicity-correction effect of standard Bayesian variable-selection priors in linear regression. Our first goal is to clarify when, and how, multiplicity correction happens automatically in Bayesian analysis, and to distinguish this correction from the Bayesian Ockham's-razor effect. Our second goal is to contrast empirical-Bayes and fully Bayesian approaches to variable selection through examples, theoretical results and simulations. Considerable differences between the two approaches are found. In particular, we prove a theorem that characterizes a surprising aymptotic discrepancy between fully Bayes and empirical Bayes. This discrepancy arises from a different source than the failure to account for hyperparameter uncertainty in the empirical-Bayes estimate. Indeed, even at the extreme, when the empirical-Bayes estimate converges asymptotically to the true variable-inclusion probability, the potential for a serious difference remains.Comment: Published in at http://dx.doi.org/10.1214/10-AOS792 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Bayesian Variable Selection and Estimation for Group Lasso

    Full text link
    The paper revisits the Bayesian group lasso and uses spike and slab priors for group variable selection. In the process, the connection of our model with penalized regression is demonstrated, and the role of posterior median for thresholding is pointed out. We show that the posterior median estimator has the oracle property for group variable selection and estimation under orthogonal designs, while the group lasso has suboptimal asymptotic estimation rate when variable selection consistency is achieved. Next we consider bi-level selection problem and propose the Bayesian sparse group selection again with spike and slab priors to select variables both at the group level and also within a group. We demonstrate via simulation that the posterior median estimator of our spike and slab models has excellent performance for both variable selection and estimation.Comment: Published at http://dx.doi.org/10.1214/14-BA929 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/

    An application of Bayesian variable selection to international economic data

    Get PDF
    Master's Project (M.S.) University of Alaska Fairbanks, 2017GDP plays an important role in people's lives. For example, when GDP increases, the unemployment rate will frequently decrease. In this project, we will use four different Bayesian variable selection methods to verify economic theory regarding important predictors to GDP. The four methods are: g-prior variable selection with credible intervals, local empirical Bayes with credible intervals, variable selection by indicator function, and hyper-g prior variable selection. Also, we will use four measures to compare the results of the various Bayesian variable selection methods: AIC, BIC, Adjusted-R squared and cross-validation
    corecore