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A b s tr a c t

G D P  plays an important role in people's lives. For example, when G D P increases, the un

employment rate will frequently decrease. In this project, we will use four different Bayesian 

variable selection methods to verify econom ic theory regarding important predictors to GDP. 

The four methods are: g-prior variable selection with credible intervals, local empirical Bayes 

with credible intervals, variable selection by indicator function, and hyper-g prior variable 

selection. Also, we will use four measures to compare the results o f the various Bayesian 

variable selection methods: AIC, BIC, Adjusted-R  squared and cross-validation.

Keywords: GDP, Bayesian statistical methods, Markov chain M onte Carlo, Bayesian variable 

selection, g-prior.
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1 Introduction

In this paper, we will select models for predicting a nation ’s gross domestic product 

(G D P) using a set o f candidate predictors. GDP plays an important role in people ’s lives. 

For example, standard econom ic theory predicts that when GDP increases, the unemploy

ment rate will decrease. As many economists have noted, GD P is a flawed measure of 

econom ic welfare. Leisure, inequality, mortality, morbidity, crime, and the natural environ

ment are just some o f the m ajor factors affecting living standards within a country, and 

these factors are incorporated imperfectly, if at all, in GDP. It is nevertheless worth m odel

ing because GDP is so important.

Since GD P is so important, many economists have built models to predict it. Huerta 

and Freitas Lopes (2000) analyzed the Brazilian industrial production index using a Bayesian 

time series m ethod to fit a Bayesian model and make short-term forecasts. In our paper, 

posterior estimates and predictors are obtained using Markov chain Monte Carlo (M CM C) 

methods based on the Gibbs sampler. There are some differences between our project and 

the Huerta etal’s paper. First, we fit a model using data from many nations instead o f using 

just one country's industrial production index. Secondly, whereas Huerta and Freitas Lopes 

collected the Brazilian's industrial production index from multiple years, 1980 to 1998, we 

use only the GD P of 2010. As another example, Fang and Miller (2008) analyzed the volatil

ity o f real GDP growth for Japan using a time series model.

In addition to modeling GDP, this paper is concerned with comparing several Bayesian 

variable selection methods. Bayesian variable selection (BVS) has a long history (Zellner 

1971; Leamer 1978; Mitchell and Beauchamp 1988). The advent o f Markov chain Monte 

Carlo methods catalyzed the development o f Bayesian model selection and Bayesian model 

averaging in regression models (George and M cCulloch 1993; Smith and Kohn 1996; Raftery, 

Madigan, and Hoeting 1997; Hoeting, Madigan, Raftery, and Volinsky 1999; Clyde and 

George 2004). Bayesian variable selection is a class o f methods within the Bayesian paradigm 

that is used for selecting important predictors from among a set o f candidate predictors. One 

advantage o f BVS over frequentist methods like LASSO and SCAD is having posterior dis

tributions on parameters, which gives us the ability to quantify our uncertainty about them.
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Another advantage is having posterior predictive distributions, which gives us the ability to 

simulate data for prediction and quantify uncertainty in them. The general types o f BVS 

are posterior-based methods, Bayes factors-based methods, and information criteria. In this 

project, we will use four different posterior-based methods to model the relationship between 

our response variable (G D P) and ten candidate predictors. The four variable selection meth

ods are: g-priors with credible intervals, empirical Bayesian g-priors with credible intervals, 

indicator variable selection, and hyper g-priors with credible intervals. These variable selec

tion methods will be compared in order to determine which performs the best.

We have also chosen to use four ways to compare the performance o f our selected sets of 

variables: AIC, BIC, adjusted R-squared, and cross validation.

The remainder o f the paper is organized as follows: in Section 2, we introduce the orig

inal data; in Section 3, we introduce the four Bayesian variable selection methods and four 

measures to compare the performance o f the various Bayesian variable selection methods; in 

Section 4, we provide the results o f the Bayesian variable selection methods applied to our 

data set; the last section contains discussion and future work.

2 Data

We obtained our data from the W orld Bank website (2017). The data set contains in

formation on 217 countries; however, because o f missing data, we used the data from only 

79 countries. Though several years were included in the original data set, we decided to use 

the data from just 2010 to conduct our analysis. This year is recent enough to be relevant 

but also old enough to incorporate data revisions.

In our data set, we have one response variable (G D P) and ten predictors. In Table 1 

we introduce the candidate predictors used in our analysis. The units o f the response vari

able (G D P) are U.S. dollars; the first predictor is expenditures on education, expressed as a 

percentage o f total government expenditures; the second predictor is exports o f goods and 

services, expressed as a percentage o f GDP; the third predictor is fertility rate, which is 

the average number o f births per woman; the fourth predictor is general government final
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consumption expenditures, expressed in U.S. dollars; the fifth predictor is gross savings, 

expressed as a percentage o f GDP; the sixth predictor is household final consumption ex

penditures, expressed in U.S. dollars; the seventh predictor is imports o f goods and services, 

expressed as a percentage o f GDP; the eighth predictor is inflation rate, expressed as a 

percentage; the ninth predictor is military expenditures, expressed as a percentage o f gov

ernment expenditures; the last predictor is population ages 15-64, expressed as a percentage 

of total population count.

The choice to use these specific candidate predictors in this study is rooted in economic 

theory. According to economists, there are two ways to partition the total value o f GDP 

(M acroeconom ics: A  Growth Theory Approach, Alejandro and Mark). One way to obtain 

G D P is by expenditure (the different ways that our output is “bought” ), using the following 

formula:

G D P =  consum ption+ investment +government production+ net exports.

The other way is by income:

GD P=w ages+profits.

Therefore, according to econom ic theory, some variables should have a significant rela

tionship with GDP. Am ong the ten candidate predictors we used were some which would 

almost certainly have a significant relationship with GDP, such as consumption, exports, 

imports, and investment. We also included some predictors which we did not expect to have 

an effect on G D P in order to test the specificity o f the various variable selection methods. 

W hen we perform the variable selection, those variables ought to be eliminated from our 

model.

3 Methods

3.1 Multiple linear regression

In this section we describe linear regression methods and build up to the Bayesian variable 

selection methods. Part o f the reason for doing this is to describe the transformations we
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Table 1: Candidate predictors used in our analysis

Variable Variable’s name
X i Expenditures on education
X 2 Exports
X 3 Fertility rate
X 4 Government consumption expenditures
X 5 Gross savings
Xe Household consumption expenditures
X 7 Imports
X 8 Inflation
X 9 Military expenditures

X 10 Population ages 15-64 (% total)

selected for the data.

In statistics, linear regression is an approach for modeling the relationship between a 

dependent variable Y  and p explanatory variables (or independent variables) denoted X ^  

X 2, ■ ■ ■, X p. Specifically, we are trying to model E (Y | X ) using the linear function X fl, 

where X  is a matrix containing column vectors for X 1, X 2, ■ ■ ■ , X p; fl is a column vector of 

coefficients; and Y  is a column vector o f responses. Another way to write this is Y = X fl+ e , 

where we assume that the errors e have a mean o f 0  and constant variance and are uncor

related. Ordinary least squares is a m ethod for estimating the unknown parameters in a 

linear regression model. The goal o f the ordinary least squares m ethod is to minimize the 

sum o f the squares o f differences between the observed responses in the given data set and 

those predicted by a linear function o f a set o f explanatory variables. That is, we minimize 

eTe =  (Y  -  X fl)T (Y  -  X fl), where fl is the estimate o f fl.

To begin our analysis, we fit the multiple linear regression model,

E  (Y |X ) =  1 / 0 +  X i/3i +  X 2 / ? 2  +  ■ ■ ■ +  X 10/3l0

Here, 1 is a column vector o f 1s. By fitting a multiple linear regression model, we hoped to 

begin to see the relationships between our response variable and the explanatory variables. 

Table 2 summarizes the multiple linear regression model fit. Figure 1 provides a scatterplot 

matrix that depicts the estimated effects from the multiple linear regression model. Ac-
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Table 2: Multiple linear regression output o f the ordinary least squares fit

Coefficients Estimate Std. Error t value p-value
Intercept 1.492e+11 2.739e+11 0.545 0.5878

X i 2.825e+07 1.815e+09 0.016 0.9876
X 2 1.012e+08 7.691e+08 0.132 0.8957
X 3 -1.152e+10 1.643e+10 -0.701 0.4855
X 4 1.920e+00 1.548e-01 12.401 <  2 e -  16 ***
X 5 3.516e+09 1.088e+09 3.231 0.0019 **
Xe 1 .0 0 2 e+ 0 0 4.038e-02 24.822 <  2 e -  16 ***
X 7 -3.640e+08 8.555e+08 -0.425 0.6719
X 8 8.741e+08 2.379e+09 0.367 0.7144
X 9 1.049e+08 1.563e+09 0.067 0.9467
X 10 -2.520e+09 3.667e+09 -0.687 0.4944

cording to this graph, only a few predictors have a linear relationship with our response 

variable.

It is clear that in the OLS fit, assuming the m odel’s assumptions are satisfied, only 

three predictors are significant, since the p-values o f those predictors are less than 0.05. We 

will now investigate the model diagnostics to verify the m odel’s assumptions.

3.2 Data transformations and model diagnostics

The nonlinear relationship depicted in the normal probability plot in Figure 2 indicates 

that the residuals for the multiple linear regression are not normally distributed. Thus, we 

should use at least one transformation on the data.

The scatterplot matrix in Figure 1 and the curvature plots included in Appendices 

A . 1  and A . 2  allow us to assess the linearity o f the relationship between the response and pre

dictors. A  hypothesis test is also performed to formally test the null hypothesis that a linear 

mean function is appropriate. The alternative hypothesis states that the mean function is 

instead curvilinear. We found that the relationship between variable X 4 and our response 

variable is curvilinear and the relationship between variable X 6 and our response variable is 

also curvilinear. To see this better, Figure 3 shows the histogram of variable X 6; it shows
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Figure 2: Normal probability plot o f residuals before transformation

that this variable has a highly-skewed distribution, which is not good for regression analysis. 

X 4 has a similar problem. In order to make those two variables’ distributions less skewed, 

we used a log transformation. We also used a log transformation o f the response Y  in order 

to improve the normality diagnostics. Finally, we consider the constant variance assumption 

inherent in multiple linear regression. Figure 4 shows a residual vs. fitted value plot; it 

suggests that the constant variance assumption is violated. A  formal test o f non-constant 

variance also indicates that the variance is non-constant. This problem  provides us another 

justification for the use o f log transformations on X 4, X 6 , and Y .

We also use C ook ’s Distance to assess whether the any o f the observations have dis

proportionate influence on the fitted regression model. C ook ’s distance or C ook ’s D is a 

commonly-used estimate o f the influence o f a data point when performing a least-squares 

regression analysis. The formula o f C ook ’s distance is:

D (Y  -  Yi)2 hi
• p x  M S E  ( 1  -  h i)2  ’

where h  is leverage o f i-th observation, Y  is the fitted value o f the ith observation, and MSE 

is the mean squared error o f the fit.
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Figure 3: Histogram of the non-standardized variable X 6

There are different opinions regarding what cut-off values to use for spotting highly 

influential points. A  simple operational guideline o f D  >  1 has been suggested (Kim  1996). 

For our data, the largest C ook ’s distance is 0.491, which is less than 1. We can arrive at the 

conclusion that none o f the observations exert undue influence on our regression analysis. 

Finally, in order to give the m odel-fitting algorithms more numerical stability and to put 

the coefficients on the same scale, we standardized the predictors X i  through X i0. In other 

words, we subtracted out the mean o f each predictor and divided by its sample standard 

deviation.

Figure 5 and Table 3 depict a scatterplot matrix and multiple linear regression output 

for the standardized transformed data. Figure 5 indicates that the modeling assumptions for 

linear regression are better satisfied. Table 3 indicates that all o f the predictors except for 

X 1 (Education expenditures) and X 8  (Inflation) appear to be significant predictors o f GDP, 

and we expect them to appear to our final model.
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Table
data

Figure 4: Residuals vs. Fitted values plot using raw, non-transformed data

Multiple linear regression output o f the ordinary least squares fit o f transformed

Coefficients Estimate Std. Error t value p-value
Intercept 25.211551 0.005083 4959.605 <  2 e -  16 ***

X i -0.005885 0.006011 -0.979 0.331045
X 2 0.208712 0.016196 1 2 . 8 8 6 <  2 e -  16 ***
X 3 0.063403 0.017051 3.718 0.000408 ***
X 4 0.375603 0.032482 11.563 <  2 e -  16 ***
X 5 0.067602 0.007125 9.489 4.46e -  14 ***
Xe 1.580155 0.031692 49.859 <  2 e -  16 ***
X 7 -0.165789 0.015659 -10.587 5.04e -  16 ***
X 8 0.001230 0.005900 0.208 0.835501
X 9 -0.013717 0.006668 -2.057 0.043512 *

X 10 0.053378 0.016576 3.220 0.001965 **
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3.3 Bayesian linear regression

Having applied appropriate transformations to the data set, we now turn to a Bayesian linear 

model for it. In probability theory and statistics, Bayes’ theorem describes the probability 

o f an event, conditional on prior knowledge about associated events.

A  prior probability distribution, often simply called the prior, o f an uncertain quantity 9 

or vector o f uncertain quantities 0 is the probability distribution that expresses one’s beliefs 

about this quantity before some given data set is taken into account. The prior distribution 

o f 0 is denoted by n (0).

The posterior distribution n (0|Y), is the conditional probability distribution for 0 , con

ditional on some data. It is constructed by combining the likelihood function and the prior 

distribution.

In statistics, a likelihood function (often simply the likelihood) is a function o f the 

parameters o f a statistical model given data. L(Y|9) is the notation for the likelihood func

tion.

The posterior distribution is proportional to likelihood * prior:

(0|Y) =  n(parameter(s)|data) a  n (0) * L (Y|0)

For this project, we will utilize a Bayesian linear regression model, Y  =  X fl +  e, where 

e ~  N (0 ,a 2 I). Y  is a 79x1  response vector, X  is the 79 x 11 design matrix, fl is a 

11 x 1 vector o f coefficients. Thus 0 =  (fl, a2)T , and the likelihood function becomes 

L(Y|fl, a 2) =  (2n )- 8  (a 2) - 8  e x p ( - ( V - W l v - x g ) ).

In Bayesian linear regression, priors must be set for a 2 and fl. The g-prior is a certain 

class o f priors for the regression coefficients o f a Bayesian multiple regression. The joint prior 

distribution o f a 2 and fl factors as

n(a2, fl) =  n (a 2)n (fl|a2),
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which is the product o f the prior distribution o f a2 times the prior distribution o f fl given 

a 2. It is com m on to use an inverse-gamma distribution on a 2 because it is a conjugate prior. 

We will prefer the improper prior,

n (a 2) a
a 2

which is the limit o f an inverse-gamma probability density function parameterized by a and 

b as a and b approach 0 from above in such a way that | is constant. This prior is also 

conjugate for a 2. It can be shown that

a 2|Y -  IG ( n , I Y T(I - - ^ P x )Y
2  2  I +  g

where Px  =  X ( X TX ) - 1 X T. The g-prior for fl, conditional on a 2 , is a normal distribution 

with mean 0 and variance ga2( X TX ) - 1 . g is a hyperparameter. In other words,

fl|a2 -  N (0 ,ga2( X TX ) - 1 ).

We note that flOLS, the ordinary least squares estimator o f fl, is flOLS= ( X TX ) - 1 X TY  and 

that var(flOLS) =  a 2( X TX ) - 1 , which serves as partial explanation for why the g-prior is 

defined the way it is. This prior for fl is conditionally conjugate, meaning that, conditional 

on a 2 , both  the prior and the posterior are o f the same family o f density functions. The joint 

posterior density is likewise the product

n (a 2 , fl|Y) =  n (a 2 |Y) * n (fl|a2 , Y ) ,

which is the product o f the posterior distribution o f a 2 and the posterior distribution o f fl , 

given a 2 . It can be shown that the conditional posterior distribution o f fl is

fl|a2 , Y  -  N  ( flo l s , Ig+ 2 - ( X TX ) - ‘ j
V I +  g I +  g )

That is, the posterior distribution o f fl given a 2 is normal with mean f lOLS and variance

f w  (X T X ) - 1 .
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3.4 Bayesian variable selection

The selection o f variables in Bayesian linear regression model is related to the prior as

sumptions made on the m odel’s parameters. Some general strategies for Bayesian variable 

selection are posterior-based methods, Bayes factor based methods, and information criteria. 

In this project, we focus on posterior-based methods and consider four such methods which 

employ the Bayesian linear regression model. In particular, three o f the four methods utilize 

g-priors.

3 .4 .1  B a s ic  g -p r io r  w ith  c r e d ib le  in terva ls

For this m ethod g must be set to some value in order to have a well-defined prior dis

tribution for fl. Various values o f g have been proposed. According to the risk inflation 

criterion (Foster and George I994), g should be set equal to p2, where p is the number of 

predictors; according to the unit information prior (Kass and Wasserman I995), g should be 

set equal to n, where n is sample size. Initially we tried 5 values to compare their effects: 

I0, 20, 50, I50, 200. Finally we decided to choose g=20, because it gave the lowest value of 

mean square prediction error in a pilot study.

Because o f the conjugacy o f the prior distributions, we are able to simulate samples from 

the joint posterior distribution using a simple loop in R  as follows. For each iteration, first 

sample

o f fl using posterior samples o f fl, which we obtained as described above. If 0 is inside the 

interval, it means that 0  is a plausible value for the component, and thus we can eliminate 

this variable from our model. Once we have selected significant variables, we will fit our

then

We perform variable selection by calculating the 95% credible interval o f each component
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regression model by taking the posterior mean o f each selected variable's coefficient as an 

estimate.

Regression diagnostic plots for the g-prior variable selection fitted model can be seen in 

Appendices A.3 and A.4.

3 .4 .2  T h e  lo ca l E m p ir ica l B a yes  a p p ro a ch

In the second variable selection m ethod we employed, the local Empirical Bayes approach 

can be viewed as estimating a separate g for each candidate model. Using the marginal 

likelihood after integrating out all parameters, an empirical Bayes value o f g is the maxi

mum (marginal) likelihood estimate constrained to be nonnegative, which turns out to be 

gEBL =  m ax(F  — I, 0), where F  =  (1-R2y/P-1-p) is the usual F  statistic for testing ^1, . . . , ^ p 

all equal 0 .

Once g is set as per above, the variable selection m ethod proceeds just as the g-prior 

with credible intervals m ethod does.

Regression diagnostic plots for a local empirical Bayes variable selection fitted model can 

be seen in Appendices A.5 and A .6 .

3 .4 .3  In d ic a to r  v a r ia b le  se le c t io n  m e th o d

At present, the computational m ethod most com m only used for fitting Bayesian models 

with intractable posteriors is the Markov chain Monte Carlo (M C M C ) technique (Robert 

and Casella 2004). Variable selection methods can take advantage o f the M CM C framework. 

Indicator model selection does not use a conjugate prior as do the g-prior based model 

selection methods. Thus M CM C is required to estimate the posterior distributions o f the 

parameters.

For the purpose o f our project, indicators are functions which can either take a value o f I 

or 0 in order to indicate whether a predictor variable belongs in the model. We use I  as our 

indicator for i= I ,  2, . . .  , I0. By including the indicator in our model, we can decide which
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variables should be eliminated from our regression model. The resulting regression model is:

Y  =  +  X 1 (^ 1 1 1 ) +  X 2 (^ 2 1 2 ) +  ' ' ' +  X 1 0 (^ 1 0 1 1 0 ) +

where

0  if otherwise

1 if variable i belongs in the model

In order to  give each variable an equal chance o f being eliminated from our model, we as

sumed that I  ~  Bernoulli(0.5) for i= 1 , 2, ■ ■ ■, 10. Also, we assumed that ^  ~Norm al(0,Ti), 

and Tj ~G am m a(1,1). The m odel was fitted using OpenBUGS, which was called from R  

using R2OpenBUGS (Sturtz et al. 2010). We performed 10,000 iterations with 100 more 

iterations for burn-in. We eliminated variables for which the posterior mean o f the corre

sponding indicator was less than 0.5.

Regression diagnostic plots for the variable selection by indicator function m ethod and 

traceplots o f ^0, 11 and U1 can be seen in Appendices A .7 through A .1 1 .

3 .4 .4  H y p e r -g  p r io r  w ith  c r e d ib le  in terva ls

This m ethod is discussed in (Liang et al.2008); we summarize it here. The shrinkage factor 

1+g in the conditional posterior o f fl given a2 is a factor which adjusts the maximum likeli

hood estimator f lOLS. It pulls the maximum likelihood estimator toward the prior mean of 

0. Instead o f requiring us to  pick a value o f g, the hyper-g prior m ethod allows the data to 

pick g by placing a prior distribution on either g or on the shrinkage factor. We assumed that 

the prior distribution o f g is n (g )= a -2 ( 1  +  g ) - “ /2 , g > 0 , which is proper distribution for a>2. 

In this case, we assumed that a = 3  in deference to the aforementioned authors’ suggestion. 

Hyper-g priors are equivalent to the specification o f a Beta prior on the shrinkage factor 1+ g ; 

that is 1+g ~  Beta(1,|-1), which is a Beta distribution with mean 2.

Once again we must use R2OpenBUGS to call OpenBUGS and estimate the posterior 

distribution o f fl using M CM C, because the incorporation o f g as a parameter to  be sampled 

results in a non-conjugate model. In using a Markov chain Monte Carlo algorithm, we per
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formed I0,000 iterations to simulate the posterior distribution o f fl and took the posterior 

mean o f the coefficients o f significant variables. Variable selection was again performed using 

credible intervals from the posterior distributions o f regression coefficients.

Regression diagnostic plot for the hyper-g prior variable selection m ethod and the trace- 

plots o f ,%, ^1 and ft2 can be seen in Appendices A .I2  through A .I 6 .

3.5 Measures for comparing the methods’ results

We would like to be able to compare the results o f the four variable selection methods and 

determine which does best for this data set. To do this, we will use a cross-validation routine 

to measure the predictive performance o f each variable selection method. In addition, we will 

also calculate three measures o f model quality in order to show what variables would have 

been selected if these had been applied instead. We describe these measures first followed 

by the cross-validation.

3 .5 .1  A k a ik e  in fo rm a tio n  c r ite r io n  (A I C )

The Akaike information criterion (AIC) is a measure o f the relative fitness o f various statis

tical models for a given set o f data. Given a collection o f models for the data, AIC estimates 

the quality o f the fit o f each model based on the maximum o f the m odel’s likelihood function. 

It provides a means for model selection. The model with the lowest AIC is preferred.

For some candidate model o f a given data set, let L  be the log-likelihood function for 

the model and let p be the number o f estimated parameters in the model. Then the AIC 

value o f the model is:

A I C  =  2 p — 2L

where L  is the log-likelihood function evaluated at the maximum likelihood estimate 

of 9. We note that small values o f 2p correspond to parsimonious models, and that small 

values o f — 2 L  correspond to models with good  fit (L is correspondingly large). This is why 

we prefer models with small AIC.

I9



3 .5 .2  B a yesian  in fo rm a tio n  c r ite r io n  (B I C )

The Bayesian information criterion (BIC) is another criterion for comparing models. The 

model with the lowest BIC is preferred; it differs from AIC in that it has a different penalty 

for nonparsimonious models:

B I C  =  log(n )p  — 2L

3 .5 .3  A d ju s te d  R -s q u a re d

R-squared is another measure used for model comparison. It is a statistical measure o f how 

close the data are to the fitted regression line. It is also known as the coefficient o f determi

nation. The bigger the R-squared value is, the better the model fits the data. The formula 

for R-squared is:

R 2  = I — SST'

where SSE is the sum of squared errors o f the regression model and SST is the sum of squares 

total for the model.

Every time a predictor in regression analysis is added, R2 increases. Therefore, the 

more predictors that are added, the better the regression will seem to “fit” the data. Even 

the addition o f predictors which are insignificant will nevertheless increase the value o f R 2.

The adjusted R 2 can instead be used to include a more appropriate number o f vari

ables, thwarting the tem ptation to keep on adding variables to a data set. The adjusted R 2 

will increase only if a new predictor improves the regression more than would be expected 

by chance. So, when adding a new predictor into a regression analysis, we would like to use 

adjusted R-squared to help us make decisions. The adjusted R-squared is a modified version 

o f R-squared that has been adjusted for the number o f predictors in the model. The bigger 

the adjusted R-squared value is, the better the model will fit. The formula for adjusted 

R-squared is

SSE

Rldj =  1 —
(I — R 2)

(n — p — I)

20



where n is the sample size and p is the total number o f explanatory variables in the 

model.

3 .5 .4  C ro ss -v a lid a t io n

Our chosen measure o f predictive performance is cross-validation. Many o f the model fit 

statistics are not a good  guide to how well a model will predict: high R 2 does not necessarily 

mean the model makes good  predictions. It is easy to  over-fit the data by including too  

many predictors and thereby inflate R 2 and other fit statistics. For example, in a simple 

polynomial regression we can just keep adding higher order terms and get better and better 

fits to the data. But the predictions from the model on new data will usually get worse as 

higher order terms are added.

One way to  measure the predictive ability o f a model is to  test it on a set o f data not 

used in fitting the model, called a “test set” . This is known as cross-validation. The data 

used for estimation is the “training set” . In each cross-validation iteration, we randomly 

divided our data set into two parts: a testing data set and a training data set. The testing 

data contained about one third o f our original data set (29 observations); the training data 

set contained about two thirds o f our original data set (50 observations).

In each iteration, and for each variable selection m ethod, we used the training data set 

to  perform variable selection. Once the variables were selected, we took  the posterior means 

o f the coefficients corresponding to  the selected variables, resulting in a fitted model. Then 

we used these fitted models to predict the test data set responses Y . Finally, when we differ

enced the observed test variable Yj and the predicted response Yj, we obtained the prediction 

error, Yj-Yj . Using the mean o f the squared prediction errors (M SPE), which is averaged 

over all squared prediction errors in each cross-validation iteration and then averaged over 

100 iterations, we can compare the variable selection methods. If M SPE is large, the m ethod 

has a poor predictive performance. Likewise, if M SPE is low, the m ethod has a good  pre

dictive performance.
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4 Results

We now present the results o f our study, starting with the variables selected by each 

method. Table 4 gives the output o f four Bayesian variable selection methods. It shows that 

the g-prior with credible intervals selected exactly one predictor, X 6, to stay in the model. 

This is concerning, given that Figure 5 shows that X 4  is also strongly linearly associated 

with the response. We see that the empirical Bayes m ethod selected X 2, X 3, X 4, X 5, X 6, 

X 7, and X 10. Indicator variable selection chose X 4  and X 6 only, while hyper-g prior variable 

selection chose X 2 and X 6. Though every m ethod selects X 6, there is wide disagreement 

regarding several o f the other candidate predictors.

According to econom ic theory, at least four predictors (consumption, exports, im

ports, and investment) should have a significant impact on GDP; and according to the 

output o f Table 4 , only the local empirical Bayes m ethod selected at least four predictors. 

This indicates this m ethod works best according to econom ic theory.

By calculating the mean squared prediction error o f the four methods, over the I00 

cross-validation iterations, we can decide which variable selection m ethod performs best em

pirically for this data set. Table 5 gives a comparison o f the four methods in terms o f mean 

square prediction error (M SPE). It is evident that the local empirical Bayes m ethod per

forms best, since it gives the lowest value o f mean squared prediction error. By this measure, 

g-prior variable selection performs worst. The discrepancy between these two methods may 

be due to the values o f g used by each. In the local empirical Bayes method, g is set to be 

nearly I0,000; in the g-prior variable selection with credible intervals method, g is set to be 

2 0 .

Table 5 also provides the values o f AIC, BIC, and adjusted R-squared for the models 

selected by each method. These are provided merely for reference; we do not imply that 

the Bayesian variable selection methods can be assessed using such criteria. It is evident 

that AIC and BIC both  favor the same model selected by local empirical Bayes. By the 

same token, the model selected by g-prior variable selection is not favored by any o f these 

measures.

According to output o f the cross-validation as well as using econom ic theory, we conclude
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Table 4: Variable selection by four methods on the full data set

g-prior VS EB VS Indicator VS Hyper-g prior VS Theory
X i No N N N
X2 N Y N N Y
X 3 N Y N N M
X 4 N Y Y N Y
X 5 N Y N N
Xe Y Y Y Y Y
X 7 N Y N N Y
X 8 N N N N
X 9 N N N N
X 10 N Y N N M

Y =Y es(include), N =N o(om it), M =M aybe

Table 5: Comparison o f the four methods o f Bayesian varia ble selection
M odel Selection Mean M SPE AIC BIC adjusted R 2

g-prior variable selection 0.2951141 -36.77993 -29.67159 0.9913
Local empirical Bayes 0 .1 0 64 9 67 -2 5 3 .9 4 5 3 -2 3 2 .6 2 0 3 0 .9995

Variable selection by indicator function 0.1104306 -84.98479 -75.50699 0.9953
Hyper-g prior variable selection 0.3195414 -79.64559 -70.1678 0.9950

that the local empirical Bayes m ethod performs best in this analysis.

5 Discussion and future work

In our project, we use four Bayesian variable selection methods to verify econom ic theory 

regarding important predictors to GDP. Also, we use four measures to compare the results 

o f the various Bayesian selection methods.

According to classical economics theory, consumption, investment, exports, and im

ports have a significant impact on GDP. According to the output o f Table 4 , the local 

empirical Bayes methods similarly finds that in 2010, consumption, investment, exports and
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imports do have a significant impact on GDP. Furthermore, and interestingly, the local empir

ical Bayes m ethod also finds that fertility rate and population ages 15-64 (% total) also have 

a significant impact on GDP. According to Barro (2001), econom ic growth is significantly 

negatively related to the total fertility rate. According to Abegunde (2007), population ages 

15-64 (% ) has a positive significant relationship with the growth o f GDP.

As measured by the cross-validation routine and econom ic theory, we believe that the 

local empirical Bayes selection m ethod works best for this data set, and the g-prior variable 

selection m ethod works worst. In terms o f computational time, g-prior variable selection and 

local empirical Bayes selection run faster than the others. Hyper-g prior variable selection 

runs the slowest. The easiest m ethod to implement is local empirical Bayes selection and 

the hardest m ethod to  implement is hyper-g prior variable selection, which requires the use 

of vector-valued function and multivariate distributions in the OpenBUGS m odel program. 

The R -code can be seen in Appendices A.17 through A.20.

There are a number o f potential ways to extend this work. We could refit the model after 

doing the variable selection. By doing this, we might obtain a better-fitting model since we 

eliminate some insignificant predictors from our model. Also, we could compare methods 

using the deviance information criterion (DIC) in addition to AIC and BIC. Moreover, we 

could use Bayes factors instead o f posterior distributions with credible intervals to  do the 

variable selection. This is a more natural way for g-prior and hyper-g prior variable selection. 

Furthermore, we might do a sensitivity analysis for our priors and the hyperparameter in 

the hyper-g prior. Finally, we could try to  simulate predictions from the posterior predictive 

distribution in order to predict training data in cross validation.
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Appendix A
A .1  ncvTest results (Test for curvature)

Test stat Pr(>|t|)
xlnew -0. 203 0. 839
x2new 0..485 0. 629
x3new 0. 503 0. 617
x4new -7. 241 0. 000
x5new 1. 131 0. 262
x6new -8. 126 0. 000
x7new 0. 598 0. 552
x8new 1. 307 0. 196
x9new -0. 014 0. 989
x10new -0. 267 0. 790
Tukey test -7. 892 0. 000

According to the output o f ncvTest, we determine that there is some curvature in the 

relationship between the response and variables X 4 and X 6, because the p-values are 

less than 0.05. This partly motivates a log-transformation for variables X 4  and X 6.
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A .2  Residual Plots (Curvature plots)

These are marginal residual plots for simple linear regression fit. 

A .3  N o rm a l Q -Q  p lo t  fo r  g -p r io r  v a r ia b le  se le ct io n

Normal Q-Q Plot

2 - 1 0 1 2  
Theoretical Quantiles

This plot indicates that the Bayesian residuals are normally distributed.
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A .4  Bayesian Residuals vs. Fitted values plot using data for g-prior variable

selection

22 24 26 28 30

Fitted value

A .5  N o rm a l p r o b a b ility  p lo t  o f  B a yes ian  resid u a ls  fo r  L o ca l e m p ir ica l B ayes

Normal Q-Q Plot

2 1 0  1 2  
Theoretical Quantiles

The linearity o f this plot indicates that the Bayesian residuals are normally distributed.
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A . 6  B a y es ia n  R e s id u a ls  vs . F it te d  va lu es p lo t  fo r  L o c a l e m p ir ica l B a y es

22 24 26 28 30

Fitted value

This is Bayesian Residuals vs. Fitted values plot for local empirical Bayes. 

A .7  T ra ce p lo t  o f  p0 fo r  v a r ia b le  se le c t io n  b y  in d ica to r  fu n c t io n

CM

0 1000 2000 3000 4000 5000

1:5000

We did 10,000 iterations and used 1 chain to get this plot. The estimated mean o f fi0 

is about 25.1.
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A .8  Traceplot of / i  for variable selection by indicator function

We did 10,000 iterations and used 1 chain to get this plot.

A .9  T ra ce p lo t  o f  ^ 1 fo r  v a r ia b le  se le c t io n  b y  in d ica to r  fu n c t io n

We did 10,000 iterations and used 1 chain to get this plot. The extreme jum ps in 

magnitude o f ^ 1 are caused by the m ethod ’s difficulty in estimating ^ 1 on iterations
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where the indicator I 1 is at 0.

A .1 0  N o rm a l p r o b a b ility  p lo t  o f  B a yes ian  resid u a ls  fo r  v a r ia b le  se le c t io n  b y  

in d ica to r  fu n c t io n

Normal Q-Q Plot

2 - 1 0 1 2  
Theoretical Quantiles

This plot indicates that the Bayesian residuals are essentially normally distributed.

A .1 1  B a yes ian  R es id u a ls  vs . F it te d  va lu es p lo t  u sin g  d a ta  fo r  V a ria b le  

se le c t io n  b y  in d ica to r  fu n c t io n

22 24 26 28 30

Fitted value
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This is Residuals vs. Fitted values plot for Variable selection by indicator function. 

A .1 2  T ra ce p lo t  o f  fo r  H y p e r -g  p r io r  v a r ia b le  se le c t io n

We did 10,000 iterations and used 1 chain to get this plot.

A .1 3  T ra ce p lo t  o f  ^ 1 fo r  H y p e r -g  p r io r  v a r ia b le  se le c t io n

CM

0 1000 2000 3000 4000 5000

1:5000

We did 10,000 iterations and used 1 chain to get this plot.
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A .1 4  Traceplot of for H yper-g prior variable selection

We did 10,000 iterations and used 1 chain to get this plot.

A .1 5  N o rm a l p r o b a b ility  p lo t  o f  B a yes ian  res id u a ls  fo r  h y p e r -g  p r io r  va ria b le  

s e le c t io n

Normal Q-Q Plot

2 - 1 0 1 2  
Theoretical Quantiles

The plot indicates that the Bayesian residuals are normally distributed.
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A .1 6  B a yesian  R es id u a ls  vs. F it te d  va lu es p lo t  fo r  h y p e r -g  p r io r  va ria b le  

s e le c t io n

22 24 26 28 30

Fitted value

This is Bayesian Residuals vs. F itted values plot for hyper-g prior variable selection.
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A .1 7  R -code for g-prior and local empirical Bayes variable selection

x=model.matrix(trainreg)
P=x%*%solve((t(x)%*%x))%*%t(x)
y=newtry
I=diag(50) # 50=size of training set
msg=0.5*t(y)%*%(I-(g/(g+1))*P)%*%y
umsg=msg/((50/2)-1)
Bmse=(g/(g+1))*as.numeric(umsg)*solve(t(x)%*%x) 
mse=diag(Bmse)~0.5 
ebeta=trainreg$coefficients 
meanbeta=(g/(1+g))*trainreg$coefficients

meanb<-matrix(NA,11,10000) 
for(i in 1:10000){

sigam<-1/rgamma(1,25,rate=msg) 
var=(g/(1+g)*sigam*solve((t(x)%*%x)))

mean=(g/(1+g)*ebeta)
meanb[,i]<-rmvnorm(1,mean,var)

}
library(HDInterval) # calculate credible interval
hdi(meanb[1,])
hdi(meanb[2,])

hdi(meanb[11,])
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A .1 8  R -code for indicator function variable selection

inits <- function(){ 
list(y.precision=1,beta0=0,I1=0,I2=0,I3=0,I4=0, 
I5=0,I6=0,I7=0,I8=0,I9=0,I10=0,u1=0,u2=0,u3=0, 
u4=0,u5=0,u6=0,u7=0,u8=0,u9=0,u10=0,t0=1,
t1=1, t2=1, t3=1, t4=1, t5=1, t6=1, t7=1, t8=1, t9=1, t10=1)

}

sdata.sim <- bugs(txtdata, inits, model.file = "150.txt", 
parameters = c("y.precision","beta0","I1","I2","I3","I4","I5","I6","I7", 
"I8","I9","I10","t0","t1","t2","t3","t4","t5","t6",
"t7","t8","t9","t10","u1","u2","u3","u4","u5","u6","u7","u8","u9","u10"), 
n.chains = 1, n.iter = 10000)

A .1 9  O p e n B U G S  c o d e  fo r  in d ica to r  fu n c t io n  v a ria b le  se le c t io n

model{
for (i in 1:50){

y[i]~dnorm(n[i],y.precision)
n[i]<-beta0+x1[i]*beta1+x2[i]*beta2+x3[i]*beta3+x4[i]*beta4+x5[i]*beta5 
+x6[i]*beta6+x7[i]*beta7+x8[i]*beta8+x9[i]*beta9+x10[i]*beta10

}
beta0~dnorm(0,t0)
t0~dgamma(1,10)
y.precision~dgamma(1,10)
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I1~dbern(0.5)
u1~dnorm(0,t1)
t1~dgamma(1,1)
beta1<-I1*u1

I2~dbern(0.5)
u2~dnorm(0,t2)
t2~dgamma(1,1)
beta2<-I2*u2

I10~dbern(0.5)
u10~dnorm(0,t10)
t10~dgamma(1,1)
beta10<-I10*u10

}

A .2 0  R -c o d e  fo r  h y p e r -g  p r io r  v a r ia b le  se le c t io n

xtr=model.matrix(trainreg)
z=t(xtr)%*%xtr
muo=as.vector(rep(0,11))

y <- matrix(y,50,1)
zzz<-round(z[1:11,1:11],2)
muo=as.vector(rep(0,11))

inits <- function(){
list(beta=c(0,0,0,0,0,0,0,0,0,0,0),y.precision=1,tau=1,lambda=0.5)

}
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model{
for(i in 1:50){ 

for(j in 1:1){
y[i,j]~dnorm(ea[i,j],y.precision)
ea[i,j] <- beta[1]+beta[2]*x1[i]+beta[3]*x2[i] +
beta[4]*x3[i]+beta[5]*x4[i]+beta[6]*x5[i]+beta[7]*x6[i] +
beta[8]*x7[i]+beta[9]*x8[i]+beta[10]*x9[i]+beta[11]*x10[i]

}
}

y.precision~dgamma(1,1) 
beta[1:11]~dmnorm(muo[],precision[,]) 
tau~dgamma(1,1) 
lambda~dbeta(1,0.5) 
g<-lambda/(1-lambda) 
for(k in 1:11){ 

for(l in 1:11){
precision[k,l]<-(1/g)*tau*z[k,l]

}
}
}

sdata2.sim <- bugs(txt2data, inits, 
model.file = "3-8 test.txt", 
parameters = c("beta","y.precision","tau","lambda"), 
n.chains = 1, n.iter = 5000)

as.integer(hdi(sdata2.sim)[,1][2]*hdi(sdata2.sim)[,1][1]>0)
*sdata2.sim$mean$beta[1]+as.integer(hdi(sdata2.sim)[,2][2]
*hdi(sdata2.sim)[,2][1]>0)
*sdata2.sim$mean$beta[2]*x1te

39


