11 research outputs found

    Expectile hidden Markov regression models for analyzing cryptocurrency returns

    Full text link
    In this paper we develop a linear expectile hidden Markov model for the analysis of cryptocurrency time series in a risk management framework. The methodology proposed allows to focus on extreme returns and describe their temporal evolution by introducing in the model time-dependent coefficients evolving according to a latent discrete homogeneous Markov chain. As it is often used in the expectile literature, estimation of the model parameters is based on the asymmetric normal distribution. Maximum likelihood estimates are obtained via an Expectation-Maximization algorithm using efficient M-step update formulas for all parameters. We evaluate the introduced method with both artificial data under several experimental settings and real data investigating the relationship between daily Bitcoin returns and major world market indices

    Quantile and expectile copula-based hidden Markov regression models for the analysis of the cryptocurrency market

    Full text link
    The role of cryptocurrencies within the financial systems has been expanding rapidly in recent years among investors and institutions. It is therefore crucial to investigate the phenomena and develop statistical methods able to capture their interrelationships, the links with other global systems, and, at the same time, the serial heterogeneity. For these reasons, this paper introduces hidden Markov regression models for jointly estimating quantiles and expectiles of cryptocurrency returns using regime-switching copulas. The proposed approach allows us to focus on extreme returns and describe their temporal evolution by introducing time-dependent coefficients evolving according to a latent Markov chain. Moreover to model their time-varying dependence structure, we consider elliptical copula functions defined by state-specific parameters. Maximum likelihood estimates are obtained via an Expectation-Maximization algorithm. The empirical analysis investigates the relationship between daily returns of five cryptocurrencies and major world market indices.Comment: 35 pages, 6 figures. arXiv admin note: text overlap with arXiv:2301.0972

    A review of probabilistic forecasting and prediction with machine learning

    Full text link
    Predictions and forecasts of machine learning models should take the form of probability distributions, aiming to increase the quantity of information communicated to end users. Although applications of probabilistic prediction and forecasting with machine learning models in academia and industry are becoming more frequent, related concepts and methods have not been formalized and structured under a holistic view of the entire field. Here, we review the topic of predictive uncertainty estimation with machine learning algorithms, as well as the related metrics (consistent scoring functions and proper scoring rules) for assessing probabilistic predictions. The review covers a time period spanning from the introduction of early statistical (linear regression and time series models, based on Bayesian statistics or quantile regression) to recent machine learning algorithms (including generalized additive models for location, scale and shape, random forests, boosting and deep learning algorithms) that are more flexible by nature. The review of the progress in the field, expedites our understanding on how to develop new algorithms tailored to users' needs, since the latest advancements are based on some fundamental concepts applied to more complex algorithms. We conclude by classifying the material and discussing challenges that are becoming a hot topic of research.Comment: 83 pages, 5 figure

    New insights on hidden Markov models for time series data analysis

    Get PDF
    The goal of this thesis is to develop novel methods for the analysis of financial data by using hidden Markov models based approaches. The analysis focuses on univariate and multivariate financial time series, modeling interrelationships between financial returns throughout different statistical methods, such as graphical models, quantile and expectile regressions. The dissertation is divided into three chapters, each of them examining different classes of assets returns for a comprehensive risk analysis. The methodologies we propose are illustrated using real-world data and simulation studies

    GAMLSS for high-dimensional data – a flexible approach based on boosting

    Get PDF
    Generalized additive models for location, scale and shape (GAMLSS) are a popular semi-parametric modelling approach that, in contrast to conventional GAMs, regress not only the expected mean but every distribution parameter (e.g. location, scale and shape) to a set of covariates. Current fitting procedures for GAMLSS are infeasible for high-dimensional data setups and require variable selection based on (potentially problematic) information criteria. The present work describes a boosting algorithm for high-dimensional GAMLSS that was developed to overcome these limitations. Specifically, the new algorithm was designed to allow the simultaneous estimation of predictor effects and variable selection. The proposed algorithm was applied to data of the Munich Rental Guide, which is used by landlords and tenants as a reference for the average rent of a flat depending on its characteristics and spatial features. The net-rent predictions that resulted from the high-dimensional GAMLSS were found to be highly competitive while covariate-specific prediction intervals showed a major improvement over classical GAMs
    corecore