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Abstract

Generalized additive models for location, scale and shape (GAMLSS) are a popular
semi-parametric modelling approach that, in contrast to conventional GAMs, regress
not only the expected mean but every distribution parameter (e.g. location, scale and
shape) to a set of covariates. Current fitting procedures for GAMLSS are infeasible
for high-dimensional data setups and require variable selection based on (potentially
problematic) information criteria. The present work describes a boosting algorithm for
high-dimensional GAMLSS that was developed to overcome these limitations. Specifi-
cally, the new algorithm was designed to allow the simultaneous estimation of predictor
effects and variable selection. The proposed algorithm was applied to data of the Mu-
nich Rental Guide, which is used by landlords and tenants as a reference for the average
rent of a flat depending on its characteristics and spatial features. The net-rent pre-
dictions that resulted from the high-dimensional GAMLSS were found to be highly
competitive while covariate-specific prediction intervals showed a major improvement
over classical GAMs.
Keywords: GAMLSS, high-dimensional data, gradient boosting, variable selection, prediction

inference, spatial information.

1 Introduction

Generalized additive models for location, scale and shape (GAMLSS) were introduced by
Rigby and Stasinopoulos (2005) as a class of statistical models for regression problems with
univariate response. GAMLSS can be seen as a flexible alternative to generalized additive
models (GAMs, Hastie and Tibshirani, 1990) as they extend the traditional GAM framework
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by a variety of modelling options. For example, GAMLSS do not require the conditional dis-
tribution of the response variable, given a set of covariates, to be a member of the exponential
family; instead, a wide variety of discrete, continuous and mixed discrete-continuous distribu-
tions is possible, including distributions based on Box-Cox transformations (such as the Box-
Cox t-distribution, Rigby and Stasinopoulos, 2004, or the Box-Cox power exponential dis-
tribution, Rigby and Stasinopoulos, 2006) and zero adjusted-distributions (such as the zero-
adjusted inverse Gaussian distribution, which is useful for insurance data, see Heller et al.,
2006). A comprehensive list of optional distributions for GAMLSS is given in Stasinopoulos
and Rigby (2007).
Another key feature of GAMLSS is that every parameter of the conditional response distri-
bution is modelled by its own predictor and an associated link function. While traditional
GAMs are typically restricted to modelling the conditional mean of the response variable
(treating other distributional parameters as fixed), the GAMLSS approach allows for the
regression of each distribution parameter on the covariates. Common distribution parame-
ters are location, scale, skewness and kurtosis but degrees of freedom (of a t-distribution)
and zero inflation probabilities can be modelled as well. Thus, in the GAMLSS approach,
the full conditional distribution of a multi-parameter model is related to a set of predictor
variables of interest.
In the same way as traditional GAMs, in GAMLSS the structure of each predictor is as-
sumed to be additive, so that a wide variety of functional terms can be included in each
predictor. Examples include non-parametric terms based on penalized splines, varying coef-
ficient terms, spatial and subject-specific terms for repeated measurements. The estimation
of GAMLSS coefficients is usually based on penalized likelihood maximization; for details
on fitting procedures see Rigby and Stasinopoulos (2005).
In practical applications, GAMLSS have proved to be a convenient option when the re-
sponse variable does not follow a distribution from the exponential family or when the shape
of the response’s distribution explicitly depends on covariates. Over the last several years,
GAMLSS have been applied to many different areas, ranging from normalising cDNA mi-
croarray data (Khondoker et al., 2009) to the analysis of flood frequencies (Villarini et al.,
2009), long-term rainfall data (Villarini et al., 2010), and the health impact of temperatures
in dwellings (Rudge and Gilchrist, 2007). Clinical applications include long-term survival
models for clinical studies (de Castro et al., 2010), while Beyerlein et al. (2008) and Fenske
et al. (2008) used GAMLSS to investigate childhood obesity, in an approach closely related to
another typical GAMLSS application: the construction of reference charts for child growth
curves (see for example Cole et al., 2009).
In this paper, we address the problem of variable selection, i.e. the selection of a reasonably
small subset of informative covariates to be included in a particular GAMLSS. The selection
of informative covariates plays a key role in many practical applications and is often required
in applications with high-dimensional data, i.e. data sets with a potentially large number of
covariates.
Clearly, even in the traditional GAM setting, variable selection is a complicated issue – one
that has been discussed extensively in the literature. With GAMLSS, problems related to
variable selection become even more serious, as not only the location parameter (usually
corresponding to the conditional mean) but also the scale and shape as well as other param-
eters of the response distribution are associated with a set of predictor variables. The high
degree of flexibility offered by GAMLSS obviously implies that efficient strategies for variable
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selection are needed to avoid overfitting of the data and to produce sparse models containing
only the most relevant covariates for each distribution parameter. Rigby and Stasinopou-
los (2005) proposed using the Generalized Akaike Information Criteria (GAIC) for variable
selection in GAMLSS. This approach, however, has several shortcomings that are partially
inherited from problems associated with the traditional AIC criterion (Ripley, 2004; Greven
and Kneib, 2010, see Section 2.2 for a detailed discussion). In the traditional framework for
GAMLSS estimation, it is impossible to avoid these shortcomings, especially if estimation is
based on data with a large number of covariates. In these high-dimensional settings, vari-
able selection procedures usually must be incorporated. In particular, the GAMLSS fitting
procedures proposed by Rigby and Stasinopoulos (2005) are infeasible when there are more
covariates than observations.
To address these issues, we developed and subsequently applied a boosting technique (de-
noted gamboostLSS in the following) for estimating and selecting the predictor effects in
GAMLSS. Our algorithm is based on the classical gradient boosting approach that origi-
nated in the machine-learning field and has been successfully adapted to fit general types
of GAMs (Bühlmann and Hothorn, 2007; Kneib et al., 2009). Making use of a recently
suggested boosting algorithm for multi-dimensional predictor effects (Schmid et al., 2010),
we present a method that can be used to adapt the classical boosting framework to the
characteristics of GAMLSS. In addition, we exploit a key feature of classical gradient boost-
ing: As shown by Bühlmann and Yu (2003), classical gradient boosting algorithms not only
result in GAM fits but also can be modified to include an intrinsic mechanism for variable
selection (component-wise gradient boosting). This approach can be fully integrated into
the new gamboostLSS algorithm, producing a sparse solution with respect to all GAMLSS
parameters (i.e. predictors for shape, scale, etc.). Consequently, gamboostLSS becomes an
efficient technique to simultaneously estimate and select predictor effects in the GAMLSS
framework, especially in settings involving high-dimensional data.
The GAMLSS application that motivated the development of the algorithm and which is
considered in Section 4 of this paper, is the 2007 Munich Rental Guide, an official reference to
determine and assess the net rent per square metre of flats in the German city of Munich (see
also Kneib et al., 2010). We applied gamboostLSS to model and select the predictor effects
of nearly 250 covariates describing flats in terms of their size, age and other characteristics
related to the net rent per square metre. Also included was spatial information, such as
the neighbourhood the flat is located in. For this high-dimensional data set, the usual
GAMLSS fitting procedures were problematic with respect to variable selection due to the
large number of covariates. Yet in order to include spatial information a new algorithm
was needed, as with current fitting procedures inclusion was not possible. We show that
GAMLSS can compete with traditional mean regression methods for this high-dimensional
data set in terms of prediction accuracy for the net rent per square metre. At the same time,
gamboostLSS can be adapted to compute covariate-specific prediction intervals, taking into
account the effects of both the flat’s characteristics and its spatial information on the shape
and scale of the conditional response-distribution and therefore also on the size of these
intervals. This cannot be accomplished by common modelling strategies that depend on a
normally distributed response, as they implicitly assume homoscedasticity and yield equally
sized intervals regardless of how expensive or cheap the flat is – clearly contradicting practical
experience.
We show that there is a substantial benefit in the GAMLSS approach when not only the
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expected mean but also the scale parameter and degrees of freedom of a three-parametric
t-distribution are regressed to the covariates. The size of the resulting intervals is no longer
fixed but adjusts flexibly to the given covariate values.
The paper is organised as follows. Section 2 starts with a detailed description of the proposed
gamboostLSS algorithm and its characteristics. We then discuss classical approaches to vari-
able selection for GAMLSS and compare them to the selection mechanisms incorporated in
gamboostLSS. Section 3 contains the results of a simulation study using high-dimensional
data with few informative predictor variables but a large number of non-informative covari-
ates. We show that gamboostLSS is an efficient strategy to separate noise from information,
i.e. to include only the informative predictor variables in the GAMLSS. In Section 4, we ap-
ply the new gamboostLSS algorithm to analyse the 2007 Munich Rental Guide. In addition
to point predictions, gamboostLSS can be used to fit covariate-specific prediction intervals,
for example for the net rent per square metre, as demonstrated here. A summary of gam-
boostLSS and its applications, as discussed herein, as well as further aspects regarding the
gamboostLSS approach, are given in Section 5. This section also briefly describes the imple-
mentation of gamboostLSS, which is based on the R software for statistical computing (R
Development Core Team, 2009). The implementation is available with the R add-on package
gamboostLSS (Hofner et al., 2010).

2 Boosting GAMLSS

2.1 GAMLSS

Rigby and Stasinopoulos (2005) refer to GAMLSS as semi-parametric regression type models.
While the term parametric refers to the fact that the response variable is assumed to follow
a parametric distribution, these models are also non-parametric because modelling of the
relation between covariates and the response may include non-linear effects. The model
class assumes observations yi for i = 1, 2, ..., n that are conditionally independent given a
set of covariates. The conditional density fdens(yi|θi) may depend on up to four distribution
parameters θi = (θi1, θi2, θi3, θi4)

>. These parameters are commonly referred to as location
(“θi1 = µi”), scale (“θi2 = σi”), skewness (“θi3 = νi”) and kurtosis (“θi4 = τi”), although θ
may include any kind of distribution parameter. Each distribution parameter θk is modelled
by its own additive predictor ηθk for k = 1, ..., 4 and depends additively on the covariates,
including possible smooth predictor effects. Let gk(·) be the known monotonic link functions
for each predictor and xk1, ..., xkpk the pk covariates in the submodel of parameter θk. Note
that we allow each of the parameters θk to depend on possibly different sets of covariates.
A GAMLSS is given by the set of equations

gk(θk) = β0θk +

pk∑
j=1

fjθk(xkj) = ηθk , k = 1, . . . , 4, (1)

where β0θk , k = 1, . . . , 4 are the intercept values of the four submodels. The function fjθk for
j = 1, ..., pk represents the type of effect the covariate j has on the distribution parameter
θk. As examples of fjθk , one can consider a classical linear effect flinear(xkj) = xkjβkj or a
smooth effect fkj(xkj) = fsmooth(xkj) represented by regression splines. In addition, spatial
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(represented by tensor product regression splines) or random effects can contribute to the
additive predictors. Clearly, a GAMLSS reduces to a conventional GAM when the model
family under consideration includes the location parameter θi1 = µi as the only distribution
parameter to be regressed on the covariates.
The unknown quantities of a GAMLSS can be estimated by maximizing the log-likelihood

l =
n∑
i=1

log [fdens(yi|θi)] =
n∑
i=1

log [fdens(yi|µi, σi, νi, τi)] , (2)

with respect to the distribution parameters θi. Estimates of the components of θi are then
obtained from back-transforming the estimates of the prediction functions (denoted by η̂θik ,
k = 1, . . . , 4) via the inverse link functions:

µ̂i = g−11 (η̂θi1), σ̂i = g−12 (η̂θi2), ν̂i = g−13 (η̂θi3), τ̂i = g−14 (η̂θi4) . (3)

To estimate the predictor functions in ηθk , Rigby and Stasinopoulos (2005) introduced a
penalized likelihood approach based on modified versions of the back-fitting algorithm for
conventional GAM estimation. They proposed two algorithms to obtain GAMLSS estimates,
implemented in the R package gamlss (Stasinopoulos and Rigby, 2007). Both follow the
same basic principle: in each iteration, back-fitting steps are successively applied to the four
distribution parameters, with the submodel fits of previous iterations used as offset values
for those parameters not involved in the current back-fitting step. For details on the two
algorithms, see Stasinopoulos and Rigby (2007).

2.2 AIC-based variable selection

Rigby and Stasinopoulos (2005) discuss a variety of strategies to select relevant predictors
and covariate effects in GAMLSS. Specifically, they propose a generalized version of the AIC,
defined as

GAIC(a) = −2 ·
n∑
i=1

log
[
fdens(yi|θ̂i)

]
+ a · df.

The GAIC consists of the negative log-likelihood and a fixed penalty factor a multiplied
by the total effective degrees of freedom (df). Note that a = 2 or a = log(n) leads to
the classical AIC or Bayesian information criterion (BIC) respectively. Despite being a
convenient strategy, GAIC-based variable selection has several shortcomings:
First, variable selection based on information criteria such as the AIC and BIC has generally
been criticized as having a large variance, i.e. as being highly instable with respect to the set
of predictor variables included in the ‘optimal’ statistical model (see for example Rawlings
et al., 1998). Second, information criteria often result in the inclusion a large number of
non-informative predictor variables; that is, they tend to include too many predictors in the
optimal model (Ripley, 2004). Also, these criteria may show a substantial bias if used to
distinguish between modelling alternatives, for example linear vs. non-linear effects (Greven
and Kneib, 2010).
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A particular problem associated with the GAIC is the choice of the penalty parameter a.
For a = 2, the criterion minimizes the Kullback Leibler discrepancy towards the optimal
model. Rigby and Stasinopoulos (2005) suggest setting a between 2 and 4 but this choice
seems hard to justify theoretically.
Finally, even with a moderate number of potential covariates, the number of candidate
GAMLSS can become very large. Consequently, if the aim is to model high-dimensional
data with a large number of predictor variables, as in our Munich Rental Guide applica-
tion, then GAIC-based variable selection becomes computationally almost impossible. The
gamboostLSS algorithm introduced in the next sections avoids these problems because it
does not rely on the GAIC approach for variable selection; rather, it provides a strategy to
estimate the GAMLSS prediction functions while simultaneously selecting appropriate sets
of predictor variables.

2.3 Functional gradient descent

The general idea behind boosting algorithms is to consider an ensemble of different ‘weak’
statistical models that yield predictions for the response variable. These models, called
base-learners, are subsequently combined to form an overall prediction of the response that
is more accurate than any of the predictions obtained from a single base-learner alone (hence
the term ‘weak’ base-learner). Generally, a base-learner can be any kind of statistical tool
that fits into the regression framework, i.e. it must result in a prediction of the response
variable that is based on the information contained in one or more covariates:

covariate(s)
base learner−−−−−−−→ prediction of the response

Typical examples of base-learners are classification and regression trees, linear models or
penalized regression splines (see Section 2.6 for examples).
Boosting was first introduced in the machine-learning field as an algorithm for the classifi-
cation of binary outcomes (AdaBoost, see Freund and Schapire, 1996). Later it was shown
that boosting can be interpreted as a gradient descent algorithm in function space (gradient
boosting, Friedman, 2001) that is directly linked to forward stage-wise additive modelling
(Friedman et al., 2000; Friedman, 2001; Bühlmann and Yu, 2003). Consequently, boosting
can be used as a technique for fitting generalized additive regression models whose pre-
diction function is determined by specification of the set of base-learners. An overview of
state-of-the-art boosting algorithms can be found in Bühlmann and Hothorn (2007).
Here, we consider the gradient boosting approach introduced by Friedman (2001). The task
is to derive a prediction η by minimizing the expectation of a loss function ρ(·) assumed to
be differentiable with respect to η:

η̂ = argmin
η

EY,X [ρ(Y, η(X))] ,

where Y and X are the random variables for response and covariate(s) respectively. In prac-
tice, for a sample of observations (y1, x1), ..., (yn, xn), the algorithm minimizes the empirical
risk

1

n

n∑
i=1

ρ(yi, η(xi))
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with respect to η by a stepwise descent of the loss-function’s gradient. Instead of fitting
the original data points, for iterations m = 1, ...,mstop the boosting algorithm iteratively fits
the gradient of the loss function to the covariate. In every step, the current version of η is
updated additively by a step-length (denoted ‘sl’) in order to approximate a minimum.

The functional gradient descent algorithm is formally given as follows:

1. Initialize η̂[0] = 0.

2. Increase m by 1. Compute the negative gradient and evaluate at the current estimate:

ui = − ∂

∂η
ρ(yi, ηi)

∣∣∣∣
ηi=η̂[m−1](xi)

3. Fit the negative gradient with the base-learners:

(xi, ui)
n
i=1

base learner−→ ĥ[m](·)

4. Update the prediction function with a step-length 0 < sl ≤ 1:

η̂[m] = η̂[m−1] + sl · ĥ[m](·)

5. Iterate steps 2 – 4 until the stopping iteration mstop is reached.

The additive structure of the resulting model fit is a direct effect of the gradient descent
algorithm, as the final aggregation of the base-learners is strictly additive; in every iteration,
small increments are added to the current prediction function η̂. This is also the link be-
tween gradient descent boosting and stagewise additive modelling as provided by the LARS
algorithm (see Efron et al., 2004).
For multi-dimensional X, the algorithm can be adapted to fit the covariates component-
wise: For each base-learner, one component of X is fit to the gradient vector, and in each
boosting step the algorithm updates only the component with the best-performing base-
learner (Bühlmann and Yu, 2003). The main advantages of this strategy emerge when a
small stopping iteration mstop is chosen (‘early stopping’): First, the algorithm includes
a data-driven mechanism for variable selection, as only the best-performing covariate is
updated in each boosting step. By stopping the algorithm early, less important covariates
are not updated and are therefore effectively excluded from the final model. Second, the
predictor functions of those covariates included in the model are shrunk towards zero, in part
also due to the step-length sl < 1. Shrinkage of the effect estimates leads to a lower variance
and therefore to more stable predictions (see Efron, 1975; Copas, 1983; Hastie et al., 2009).
Furthermore, component-wise boosting allows the estimation of a greater number of effect
coefficients than observations. As only one base-learner is fitted at a time, the curse of
dimensionality becomes almost irrelevant for the estimation procedure. Also, problems with
multi-collinearity, which arise often in high-dimensional data, do not have a negative effect
on the estimation accuracy.
An implementation of gradient descent algorithms for a multitude of statistical modelling
options is available with the R add-on package mboost (Hothorn et al., 2010a,b).
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2.4 The gamboostLSS algorithm

With the gamboostLSS algorithm, we propose a component-wise gradient descent algorithm
that rotates between the different prediction functions of the distribution parameters for
GAMLSS. Analogous to the classical gradient descent algorithm presented in the previous
subsection, gamboostLSS can handle high-dimensional data settings (p > n) and includes
intrinsic variable selection.
To extend the classical gradient boosting approach to the GAMLSS framework, we adopted
a strategy recently proposed by Schmid et al. (2010): In each iteration, gamboostLSS cal-
culates the negative partial derivatives of the negative log-likelihood function of a GAMLSS
with respect to each of the four predictors ηθk , k = 1, . . . , 4. These four predictors are
updated successively in each iteration, in which the current estimates of the other distribu-
tion parameters are used as offset values. A schematic overview of the updating process of
gamboostLSS in iteration m+ 1 is as follows:

(µ̂[m], σ̂[m], ν̂ [m], τ̂ [m])
update−→ η̂[m+1]

µ −→ µ̂[m+1] ,

(µ̂[m+1], σ̂[m], ν̂ [m], τ̂ [m])
update−→ η̂[m+1]

σ −→ σ̂[m+1] ,

(µ̂[m+1], σ̂[m+1], ν̂ [m], τ̂ [m])
update−→ η̂[m+1]

ν −→ ν̂ [m+1] ,

(µ̂[m+1], σ̂[m+1], ν̂ [m+1], τ̂ [m])
update−→ η̂[m+1]

τ −→ τ̂ [m+1] .

The prediction functions are updated for each additive predictor ηθk until the stopping
iteration mstop is reached. In some settings, it may be additionally convenient to allow mstop

to differ between the distribution parameters. mstop = (mstop,1, ...,mstop,4)
> is therefore a

vector of tuning parameters that can, for example, be determined using cross-validation (see
Subsection 2.5 for details).
In the case of GAMLSS, the component-wise base-learning strategy presented above can be
naturally extended. Since there is not only one (as in classical GAMs) but a set of up to
four distribution parameters θ = (θ1, . . . , θ4)

>, each distribution parameter of a GAMLSS
has its separate additive predictor ηθk that is updated component-wise by gamboostLSS. For
example, if θ is of length K = 4, we specify four sets of base-learners, with each set used to
update one of the four additive predictors. Thus, in each iteration and for each distribution
parameter, the base-learner that best fits the respective negative partial derivative is used
to update the prediction function under consideration. A direct consequence of this strategy
is that each of the prediction functions may depend at the final iteration on a different set
of covariates, leading to variable selection in each predictor. In principle, any type of base-
learner that can be used in classical gradient boosting can also be specified for the prediction
functions in gamboostLSS (see Subsection 2.6 for an in-depth discussion).
A formal definition of gamboostLSS is as follows. Since the task is to model the distribu-
tion parameters of the conditional density fdens(y|µ, σ, ν, τ), the optimization problem for
gamboostLSS can be formulated as

(µ̂, σ̂, ν̂, τ̂) = argmin
ηµ,ησ ,ην ,ητ

EY,X
[
ρ(Y, ηµ(X), ησ(X), ην(X), ητ (X))

]
(4)

with ρ = −l the negative log-likelihood of the response distribution and (Y,X) the ran-
dom variables for the response or the covariates respectively. Given that the theoretical
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expectation is, in practice, unknown, we follow the classical gradient boosting approach and
minimize the empirical risk

1

n

n∑
i=1

ρ(yi, ηµi , ησi , ηνi , ητi) =
1

n

n∑
i=1

ρ(yi,ηi)

over ηi = (ηµi , ησi , ηνi , ητi)
>, with y = (y1, ..., yn)> denoting the response vector with ob-

servations being conditionally independent given a set of covariates. In each iteration of
gamboostLSS, pre-specified sets of base-learners are used to fit the negative partial deriva-
tives of the empirical risk (with respect to the elements of ηi) as evaluated at the current
prediction.
These considerations lead to the following gradient boosting algorithm for fitting GAMLSS
(gamboostLSS):

1. Initialize the additive predictors η̂
[0]
µi , η̂

[0]
σi , η̂

[0]
νi , η̂

[0]
τi with offset values, e.g. η̂

[0]
θki

= 0 for
k = 1, ..., 4 and i = 1, ..., n.

2. For each distribution parameter θk, k = 1, . . . , 4, specify a set of base-learners, i.e. a set
of regression-type estimators (trees, P-splines, etc.) depending on subsets of the covari-
ates. Denote the set of base-learners for distribution parameter θk by hk1(·), . . . , hkpk(·),
k = 1, . . . , 4, where pk is the cardinality of the set of base-learners specified for θk. The
base-learners may be the same for each θk but may also differ.

Set the iteration counter m = 0.

3. Increase m by 1.

4. (a) Set k = 0.

(b) Increase k by 1. If m > mstop,k proceed to step 4(f).
Else compute the negative partial derivative − ∂

∂ηθk
ρ(yi,ηi) and plug in the current

estimates ηi = (η̂
[m−1]
µi , η̂

[m−1]
σi , η̂

[m−1]
νi , η̂

[m−1]
τi ).

This yields the vector of partial derivatives

u
[m−1]
k =

(
− ∂

∂ηθk
ρ(yi,ηi)

)
i=1,...,n

.

(c) Fit the negative gradient vector u
[m−1]
k to each of the base-learners contained in

the set of base-learners specified for the predictor ηθk in step 2.

(d) Select the component j∗ that best fits the negative partial-derivative vector ac-
cording to the least-squares criterion, i.e. select the base-learner hkj∗ defined
by

j∗ = argmin
1≤j≤pk

n∑
i=1

(u
[m−1]
ik − hkj(·))2 .

(e) Update the additive predictor ηθk as follows:

η̂
[m−1]
θk

= η̂
[m−1]
θk

+ sl · hkj∗(·) ,
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where sl is a small step-length (0 < sl� 1). Therefore, only the best-performing
base-learner (and therefore the best-performing covariate) contributes to the up-
date.

(f) Set η̂
[m]
θk

= η̂
[m−1]
θk

.

(g) Repeat steps 4(b) to 4(f) for k = 2, ..., 4.

5. Iterate steps 3 and 4 until m > mstop,k for all k = 1, ..., 4.

Due to the additive updates in each iteration step (η̂
[m]
θk

= η̂
[m−1]
θk

+sl ·hkj∗(·)), every resulting
predictor ηθk follows an additive structure as in (1). The type of the resulting predictor
functions fjθk (effect of covariate j on distribution parameter θk) corresponds to the base-
learner hkj. The selection of the base-learners is therefore, above all, a decision regarding
the structure of the additive model. The base-learner defines the type of effect represented
by the function fjθk for covariate component j on parameter θk (for possible base-learners
see Subsection 2.6).
One of the main characteristics of gamboostLSS is its ability to handle high-dimensional
setups in which there are more effects to estimate than observations. Note that these setups
are more likely for GAMLSS than for common GAMs, as different models may be fitted not
only for the conditional mean but also for other parameters of the response distribution.
For the sake of consistency within classical GAMLSS theory (Rigby and Stasinopoulos, 2005),
in the denotation of the algorithm in this section four distribution parameters are always
considered. Yet it should be noted that gamboostLSS is able to handle distributions even
more complex than those considered by Rigby and Stasinopoulos (2005), as gamboostLSS
does not require the number of distribution parameters (denoted as K in the following) to
be less than or equal to 4.

2.5 Tuning gamboostLSS

The most important tuning parameter of gamboostLSS is the vector of stopping iterations
mstop. Here, mstop is a K-dimensional vector that defines the stopping iteration for each
distribution parameter θk, i.e. the iteration after which further update of ηθk is no longer nec-
essary. By standard gradient descent arguments (see Rosset et al., 2004), for mstop,k →∞ ∀k
gamboostLSS converges to the same solution as provided by the classical maximum likelihood
estimation (based on the algorithms provided by Stasinopoulos and Rigby, 2007). This re-
sult is also supported by simulation studies concerning GAMLSS fitting to low-dimensional
data (Section 3). For small(er) stopping iterations (early stopping), the effect estimates
produced by gamboostLSS shrink towards zero as the additive updates are stopped before
convergence. Shrinkage of the effect estimates has the advantage that predictions become
more stable since the variance of the estimates is reduced. This feature is also one of the
major advantages of classical gradient boosting (Hastie et al., 2009). Another advantage
of early stopping is that gamboostLSS has an intrinsic mechanism for data-driven variable
selection, as only the best-fitting covariates are updated in each boosting iteration. Early
stopping of the algorithm reduces the chance that less important variables are selected for
the distribution parameters. Hence, the stopping iteration mstop,k not only controls the
amount of shrinkage applied to the effect estimates but also the complexity of the model for
the distribution parameter θk.
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Another tuning parameter is the step-length (sl) involved in the additive updates. The step-
length also contributes to the shrinkage effect and guarantees the stability of gamboostLSS;
therefore, sl should be a small positive number (� 1). In early boosting algorithms the
estimation of an ‘optimal’ value of sl in every iteration was proposed (see Friedman, 2001).
However, recent results suggest that this (time-consuming) procedure is of relatively little
importance for the prediction accuracy of boosting algorithms as there is a direct dependency
between mstop and the step-length (Schmid and Hothorn, 2008). We therefore used a fixed
step-length for gamboostLSS (sl is set equal to 0.1, a value commonly used in practical
applications) and concentrated on finding an optimal stopping iteration mstop.
For GAMs (K = 1) estimated by classical gradient boosting, mstop is usually selected with
the help of cross-validation (CV) techniques. To effectively avoid overfitting, it is crucial
that boosting algorithms are not run until convergence; they should be stopped consid-
ering the predictive risk in a separate test data set (see Bühlmann and Hothorn, 2007).
With CV, mstop is optimized by evaluating the predictive empirical risk in each iteration
using different folds of learning and test data. The ‘optimal’ value of mstop is then given
by the iteration with smallest predictive risk (averaged over the folds, see Hothorn et al.,
2005). In the case of GAMLSS, CV is more complex, as K different stopping iterations
can be chosen to allow for different levels of complexity in each sub-model. In the follow-
ing sections, we distinguish between one-dimensional early stopping (mstop,k ≡ mstop for
k = 1, ..., K) and multi-dimensional early stopping in which the elements of mstop,k differ for
k = 1, ..., K. While the choice of the same stopping iteration for all distribution parameters
(mstop,k ≡ mstop for k = 1, ..., K) requires only a one-dimensional CV (and therefore reduces
the computational effort), multi-dimensional early stopping provides greater flexibility and
more accurate estimation results. With multi-dimensional early stopping, CV is achieved
using a K-dimensional grid of stopping iterations, in which the optimal vector of stopping
iterations is given by a combination of iterations with the smallest predictive empirical risk.
For details on the early stopping techniques used for simulation studies and analysis of the
Munich Rental Guide, we refer the reader to Sections 3 and 4.
Other parameters that influence the resulting stopping iteration are the initial values η̂

[0]
θk

.

Offset values such as η̂
[0]
θk

= 0 are a possible and easy solution, yet they typically result
in longer run-times (more iterations needed) than are needed with more ‘intelligent’ initial
values. In the implementation of our algorithm, we used a marginal optimization of the
empirical risk with respect to constant offsets (η̂

[0]
θk

= ck) for k = 1, ..., K.

2.6 Base-learners and distributions

Another characteristic of the presented algorithm is its flexibility with respect to the selec-
tion of base-learners and therefore of the type of effect(s) that covariates will have on the
predictors of the GAMLSS distribution parameters. Generally, all base-learners available in
the classical boosting framework can be used, e.g. those provided by the R add-on package
mboost (Hothorn et al., 2010a,b). It is important to keep in mind that, due to the additive

update (η̂
[m]
θk

= η̂
[m−1]
θk

+ sl · hkj∗(·)) of gamboostLSS, the final boosting estimate of a predic-
tor effect for a particular covariate has the same structure as the base-learner specified for
this covariate at the beginning of the gamboostLSS algorithm. For example, the predictor
effect of a covariate is linear in this covariate if its base-learner is a simple linear model (see
Bühlmann and Hothorn, 2007). Similarly, the predictor effect of a particular covariate is a
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smooth non-linear function of this covariate if the corresponding base-learner is a smooth
non-linear function as well.
There are several types of base-learners that can be used for gamboostLSS. (i) Linear effects
are represented by simple linear models estimated by the classical least-squares method.
(ii) Non-linear effects include those considered herein, which are modelled using penalized
regression splines (P-splines); that is, a smooth effect of a predictor variable is modelled as a
linear combination of B-spline functions on a fixed set of equidistant knots. Additionally, a
roughness penalty based on the squared second-order differences of effect coefficients belong-
ing to adjacent basis functions is included (Eilers and Marx, 1996). (iii) Spatial effects can be
incorporated into gamboostLSS by setting up a bivariate tensor product extension of penal-
ized B-splines for a two-dimensional continuous variable representing geographic information
(Kneib et al., 2009). Consequently, this ‘tensor product P-spline’ becomes a base-learner re-
lying on two covariates, namely the coordinates of a spatial location on a two-dimensional
grid (or map). Another possible base-learner for spatial effects is the adaptation of Markov
random fields (MRF) for those effects with a neighbourhood structure. The covariate of the
corresponding MRF is therefore given by an indicator specifying both a particular region
and information on neighbouring regions (Sobotka and Kneib, 2010). We applied this base-
learner to model the spatial structure of the Munich Rental Guide Data (see Section 4). (iv)
Random effects are taken into account by modelling subject-specific effects or the categorical
grouping variables contained in a data set using random intercepts or slopes for each level
or subject. Following the approach of Kneib et al. (2009) (supplementary material), we used
ridge-penalized base-learners to incorporate random effects into gamboostLSS.
The possibility to model spatial and random coefficient effects for GAMLSS must be em-
phasized, since until now this has not been feasible, at least not with the currently available
implementation of the classical algorithms provided by Stasinopoulos and Rigby (2007).
The proposed gamboostLSS algorithm therefore not only extends the possibilities for fitting
GAMLSS to high-dimensional data but also offers greater flexibility for modelling different
types of effects in low-dimensional settings.
Rigby and Stasinopoulos (2005) consider a large set of different GAMLSS distributions, all
of which can be fitted by the proposed boosting algorithm. In this paper, we apply the
negative binomial distribution for count data and the log-logistic distribution for accelerated
failure time models in simulation studies (Section 3). For the analysis of the Munich Rental
Guide (Section 4), we have applied a three-parametric t-distribution.

3 Simulation study with high-dimensional data

We carried out a simulation study with different data settings including linear and non-
linear effects for two different response distributions. In this study, two GAMLSS families
were considered: the negative binomial distribution for count data and the log-logistic dis-
tribution for accelerated failure time models for time-to-event data. Both settings included
high-dimensional data with more covariates than observations (p > n). Since most of the
covariates were strictly non-informative, appropriate selection of the model’s informative
predictors was considered crucial.
For the presented settings, it was not possible to compare the results of gamboostLSS with
those of the original algorithms by Rigby and Stasinopoulos (2005), as the latter are unable
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to estimate more coefficient effects than observations. Yet, in the smaller simulated settings
and data sets provided in the R add-on package gamlss (Stasinopoulos and Rigby, 2007),
we confirmed that in the low-dimensional case our algorithm converged to the results of the
original back-fitting procedures (not presented here).

Our simulation study was aimed at answering the following questions:

1. Is the proposed gamboostLSS algorithm able to correctly model the corresponding
distribution parameters of the GAMLSS families in high-dimensional settings?

2. Is the algorithm able to identify the small subset of informative covariates?

3. What is the effect of early stopping? Is there a difference if one-dimensional rather
than multi-dimensional early stopping is applied?

All calculations and simulations were carried out using the R software for statistical com-
puting (R Development Core Team, 2009). The gamboostLSS implementation applied in
this study is available with the R add-on package gamboostLSS (Hofner et al., 2010).

3.1 Linear setting

For linear settings, we considered the negative binomial distribution for count data with
distribution parameters µ (location) and σ (accounting for overdispersion). With the chosen
setting, both parameters are regressed to the covariates such that both location and disper-
sion depend on the covariates. We simulated n = 800 observations arising from the negative
binomial distribution with density

fdens(yi|µi, σi) =
Γ(yi + σi)

Γ(yi + 1)Γ(σi)

(
µi
σi

)yi
(
µi
σi

+ 1
)(yi+σi) ,

where the underlying additive linear predictors are given by

log(µi) = ηµi = 1.5 + 1 · x1i + 0.5 · x2i − 0.5 · x3i − 1 · x4i +
1000∑
j=5

0 · xji ,

log(σi) = ησi = 0 · (x1i + x2i)− 0.4 · x3i − 0.2 · x4i + 0.2 · x5i + 0.4 · x6i +
1000∑
j=7

0 · xji ,

and where the covariates x1, ...,x1000 are 1×n vectors of iid realizations of random variables
X1, ..., X1000 following a multivariate normal distribution with a mean of zero and a stan-
dard deviation (sd) equal to 1. The covariates are pairwise correlated with the correlation
coefficient ρ = 0.5. Thus, 1,000 covariates were included of which only six were informative
for any of the distribution parameters (two for both, two only for the location parameter
and two only for the dispersion parameter).
Since the predictors are linear, simple linear regression models were used as base-learners
in the proposed gamboostLSS algorithm. We considered 2 × 1, 000 simple linear models as
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base-learners for each of the two distribution parameters; hence, one model was used as a
base-learner for each covariate and distribution parameter. The step length was fixed as 0.1
and the stopping iteration mstop determined by evaluating the empirical risk on an additional
independent iid data set with 1,000 observations, following the same distribution as the
original data set. Both one- and two-dimensional early stopping were carried out, evaluating
a grid of different stopping iterations for µ and σ. The resulting stopping iterations for
the two parameters differed: With one-dimensional early stopping the average mstop was
412.4 (sd = 67.9) whereas for two-dimensional stopping the average stopping iteration for
η̂µ (501.9, sd = 96.9) was higher than that for η̂σ (419.3, sd = 124.0). The resulting average
predictive risk at the ‘optimal’ two-dimensional stopping iteration (2667.5, sd = 47.9) was
only slightly smaller than that for one-dimensional early stopping (2670.2, sd = 47.3) at an
average of 412.4 iterations for both parameters. This result suggests that, in this particular
simulation setting, a one-dimensional search for the optimal mstop can yield satisfying results.
Figure 1 presents the coefficient estimates resulting from the algorithm with multi-dimensional
early stopping, allowing for different complexities in the models for µ and σ. The box-plots
correspond to the empirical distribution of estimates from 100 independent samples of size
n = 800, each generated from the negative binomial distribution specified above. The signs
of the coefficient estimates and their magnitudes both for µ and for σ clearly reflect the true
structures of ηµ and ησ. As expected, due to the regularization property of the presented al-
gorithm, all coefficient estimates shrunk towards zero. The estimates for all non-informative
covariates are presented together in the last box-plot, which shows that the variable selec-
tion carried out by gamboostLSS works remarkably well. This view is further supported by
the selection rates, i.e. the proportion of simulation runs in which a particular base-learner
was chosen at least once before gamboostLSS was stopped: The non-informative variables
for the location parameter µ had an average selection rate of 3.5% in the estimation of η̂µ.
For the estimation of η̂σ, the non-informative variables (including X1 and X2) were selected
in 1.8% of the simulation runs. The average number of variables selected from the 1,000
available covariates was 39.2 (sd = 14.2) for the location model and 20.5 (sd = 7.9) for
the scale model, which highlights the ability of gamboostLSS to generate sparse models in
high-dimensional data settings.

3.2 Non-linear setting

After evaluating the performance of gamboostLSS in high-dimensional data setups with a
linear additive structure, we considered additive predictors including non-linear effects. For
those non-linear predictors, we chose the log-logistic distribution for accelerated failure time
models as the GAMLSS example. These models are an alternative to Cox proportional
hazard models and are a popular choice for modelling survival data parametrically (Klein
and Moeschberger, 2003). They are based on the model equation

log(y) = µ+ σ ·W,

where y is the survival time, µ the location and σ the scale parameter. W is the noise
variable, which in the case of a log-logistic response follows a standard logistic distribution.
We simulated 800 observations following a log-logistic distribution with density
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Figure 1: Results from the simulation study, linear setting: Box-plots display the empirical
distribution of the estimated coefficients for the location parameter (left) and the scale pa-
rameter (right) of the negative binomial distribution, obtained from running gamboostLSS in
a high-dimensional setting (100 simulation runs). The dashed lines represent the underlying
true coefficients without shrinkage.

fdens(yi|µi, σi) =
exp

(
yi−µi
σi

)
σi

(
1 + exp

(
yi−µi
σi

))2 .
The underlying additive predictors were specified as follows:

µi = ηµi = 1 + 8 · sin(x1i) + 3 · log(x2i) +
1000∑
j=3

0 · xji ,

log(σi) = ησi = 0 · (x1i + x2i)− 0.8 · (x43i − x33i − 5 · x23i)− 3 · x4i +
1000∑
j=5

0 · xji.

All covariates were sampled from uniformly distributed random variables X1, ..., X1000 on
a grid from 0 to 3 and were pairwise independent, thus yielding four informative (two for
each distribution parameter) and 996 non-informative covariates. In addition to the survival
times ysurv, we simulated iid censoring times ycens following the same distribution as ysurv.
Censoring took place when the sampled censoring time was smaller than the survival time.
The observed survival times were then given by yi = min(ysurvi, ycensi). As a result, about
half of the observed survival times were independently right-censored.
As base-learners cubic P-splines (20 equidistant knots with a second-order difference penalty)
were used, with four degrees of freedom assigned to each P-spline base-learner. One P-
spline base learner was used for each available covariate and for each of the distribution
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Figure 2: Results from the simulation study, non-linear setting. Solid grey lines display esti-
mated predictor functions for the location parameter (top) and the scale parameter (bottom)
of the log-logistic distribution obtained from running gamboostLSS at a high-dimensional
setting (100 simulation runs). Dashed lines represent the underlying true functions without
shrinkage.

parameters. Hence, the learning algorithm was able to select from 2,000 different base-
learners to update the GAMLSS fit. We again performed one- and two-dimensional early
stopping, with mstop selected using an additional independent iid data set consisting of 1,000
observations following the same distribution as the original data. The average value of mstop

obtained from one-dimensional stopping was 113.4 (sd = 8.3). The iterations resulting from
the two-dimensional early stopping differed only slightly for η̂µ (110.1, sd = 13.3) and η̂σ
(117.1, sd = 9.8). Also, the resulting average predictive risk from two-dimensional early
stopping (626.7, sd = 48.2) was only slightly smaller than the empirical predictive risk from
the one-dimensional strategy (634.7, sd = 45.4).
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Figure 2 presents the effect estimates from the models with two-dimensional early stopping.
The resulting function estimates from 100 simulation runs are plotted along with the respec-
tive true functions. The effects of X1, ..., X4 are well-approximated by their corresponding
estimates, taking into account that, as in the linear setting, the effect estimates shrink to-
wards zero as a result of the regularization property of gamboostLSS. Only the predictor
function of X1 for η̂µ seems to be somewhat problematic. In the centre of the X1 grid, no
shrinkage effect is observed, as the estimated functions appear to be larger than the true
effect of X1. This result may be explained by the fact that the slope of the sine function is
largest near 0 and π, and that boundary effects may occur in these regions if P-splines are
used to approximate the sine function. Since all function estimates in Figure 2 are vertically
centred around the zero line, these boundary effects may in turn lead to a ‘vertical lift’ of
the estimates and therefore to a spurious positive bias of estimates near 0.
The informative covariates X1, ..., X4 were selected in every simulation run (selection rates =
100% for both parameters), while X5, ..., X1000 were selected on average in 1.7% of the
simulations for η̂µ and in 0.12% of the simulations for η̂σ. These selection rates further
emphasize that the intrinsic variable selection carried out by gamboostLSS works remarkably
well, providing sparse solutions in high-dimensional settings.

4 Munich Rental Guide

4.1 Data and models

Most larger German cities publish rental guides as a reference on ‘average rents’ for both
landlords and tenants. These guides offer point predictions for the net rent based on a flat’s
characteristics together with spans (or prediction intervals) indicating the range of usual
rents. Although earlier rental guides were tabular-based, nowadays most are derived from
regression models with a flat’s characteristics as covariates and the net rent or net rent per
square metre as response variable.
In this section, we use GAMLSS to analyse data collected for the 2007 rental guide for the
German city of Munich. The main objective of the analysis is to obtain point predictions for
the net rent per square metre and to construct prediction intervals holding a pre-specified
coverage probability for this variable. Our sample comprises data obtained from n = 3016
flats within the city of Munich, with detailed information on these flats in terms of 238
categorical covariates describing characteristics such as the quality of bathroom equipment,
whether the flat is a first-time rental, or whether a garden or a balcony is included. In
addition, the 2007 Munich rent data contain two continuous covariates, the size of the flat and
the year of the building’s construction, as well as spatial information regarding in which of the
411 neighbourhoods the particular flat is located (see http://www.muenchen.de/mietspiegel
for the official documentation of the rental guide).
Previous analyses of rent data collected in the city of Munich revealed that both the size of
the flat and the year of the building’s construction have non-linear predictor effects on the
net rent. Also, spatial heterogeneity remained even after a number of further covariate effects
were accounted for (Fahrmeir et al., 2004). Specifically, Kneib et al. (2010) demonstrated
the beneficial use of the complete covariate information contained in the 238 categorical
covariates. Moreover, Stasinopoulos et al. (2000) identified variance heteroscedasticity when
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modelling the net rent from an earlier version of the Munich Rental Guide. To address
this problem, Stasinopoulos et al. (2000) fitted a gamma distribution model in which both
the mean and the dispersion were explicitly modelled. Additionally, Fahrmeir et al. (2004)
considered a two-step estimation approach in which the squared residuals obtained from
an ordinary least-squares estimation were successively used as weights in a weighted least-
squares estimation. Instead of considering these approaches, we use GAMLSS to model
heteroscedasticity directly. This is accomplished by including covariate effects on both the
location and the variance parameters of the response distribution.
As a response distribution for the net rent per square metre, we consider the three-parameter
t-distribution with location parameter θ1 = ηµ =: µ, scale parameter θ2 = exp(ησ) =: σ and
degrees of freedom θ3 = exp(ηdf) =: df. The probability density function of the net rent
per square metre conditional on a set of predictor variables is thus given by

f(yi|µi, σi, dfi) =
Γ(dfi+1

2
)

σiΓ(1
2
)Γ(dfi

2
)
√
dfi

(
1 +

(yi − µi)2

(σ2
i · dfi)

)(−(dfi+1)/2)

,

(see Rigby and Stasinopoulos, 2005). The mean of the t-distribution is equal to µ, and its
variance is given by σ2 · df

df−2 . For each of the parameters µ, σ2, and df, we consider the
predictors

ηµi = β0µ + x>i βµ + f1µ(sizei) + f2µ(yeari) + fspatµ(si) ,

ησi = β0σ + x>i βσ + f1σ(sizei) + f2σ(yeari) + fspatσ(si) ,

ηdfi = β0df + x>i βdf + f1df(sizei) + f2df(yeari) + fspatdf(si) ,

i = 1, . . . , n, where β0θk and βθk correspond to the intercept and parametric effects of the
238 categorical covariates (denoted by x>i ), f1θk(size) and f2θk(year) are non-linear effects of
the size of the flat and the year of construction respectively and fspatθk(s) is a spatial effect
based on the neighbourhood s = 1, . . . , 411 within the city of Munich.
To sum up, this section presents a GAMLSS using the complete set of 238 categorical co-
variates in addition to the size of the flat, its year of construction and spatial information.
Estimation and variable selection for this high-dimensional GAMLSS is accomplished by
using gamboostLSS with linear base-learners for the effects corresponding to categorical pre-
dictor variables. Non-linear effects for size and year of construction of the flats are modelled
using cubic P-spline base-learners each with 20 inner knots, a second-order difference penalty
and four degrees of freedom. A Gaussian MRF base-learner with six degrees of freedom is
assigned to the spatial effect (Sobotka and Kneib, 2010). Optimal boosting iterations are
determined separately for each of the three model parameters using three-dimensional 10-
fold cross validation. This strategy is computationally more expensive than using the same
stopping iteration for all three predictors, yet it enables gamboostLSS to select models with
very different complexities for each parameter.
To evaluate the predictive performance of the high-dimensional GAMLSS, we consider an
alternative model based on the t-distribution with the same predictor structure as above but
with a reduced set of categorical covariates, including only an expert selection of 28 effects.
This expert set of covariates was used in the last official Munich Rental Guide and was also
considered as a benchmark model in Kneib et al. (2010). In fact, the expert selection is not
merely a subset of the original covariates but also involves transformation and combinations
of the original covariates. Models based on this expert selection are referred to as ‘expert
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models’ in the remainder of this section. In addition to GAMLSS with a t-distribution for
the response, we estimate additive models based on squared error loss for both the high-
dimensional and the expert sets of covariates. Those Gaussian additive models are part of the
generalized additive models framework and are therefore denoted as GAMs. Component-
wise gradient boosting with the squared error loss (see Bühlmann and Hothorn, 2007) is
used to fit the GAMs. The same base-learners as those specified above are used to estimate
the predictor θ1 = ηµ (i.e. the location parameter) of these models. Below, we evaluate
the predictive performance of these different models in terms of their point predictions and
prediction intervals.

4.2 Results from high-dimensional GAMLSS

Figures 3 and 4 show the estimated non-linear and spatial effects for the high-dimensional
GAMLSS. Regarding the location parameter, the results are mostly consistent with previous
findings from mean regression models (e.g. Kneib et al., 2010): Increased net rents per square
metre are associated with flats that are located either in old buildings (constructed before
1900) or in rather new buildings. Similarly, small flats are more expensive (per square metre)
than larger ones. The spatial effect indicates increased net rent per square metre in the center
of Munich and also along the Isar River, which crosses Munich from south to north.
Despite the similarity between GAMLSS and conventional mean regression models, the for-
mer offers much richer, additional information in terms of the covariate effects on the scale
parameter and the degrees of freedom. In our example, the size effects and the spatial ef-
fect on the scale parameter indicate that areas with a higher (lower) net rent per square
metre are mostly associated with greater (less) variability. This intuitively makes sense and
corresponds to the form of heteroscedasticity most frequently associated with applications
involving housing data. The effect of the year of construction is much less prominent than
the effect of size on the degrees of freedom. Neither the year of construction nor the spatial
effect was selected by gamboostLSS for the predictor ηdf.
For comparison, Figure 4 shows the spatial effects obtained from fitting a high-dimensional
and an expert model GAM. In principle, the same areas identified by the location part ηµi
of the high-dimensional GAMLSS were identified by the GAM, with a few difference in the
absolute size of the estimated effects. Similarly, non-linear effects on the location parameters
adopt basically the same forms (not displayed here) for GAM as for GAMLSS (Figure 3),
with the range of effects being somewhat larger for the latter. This effect is most probably
caused by the additional impact of covariates on the scale and degrees of freedom.
Among the 238 categorical covariates, only a small subset has non-negligible impact on the
parameters of the response distribution. In the high-dimensional GAMLSS, lower values of
the location parameter are, for example, associated with flats located in company houses or
in the basement. The presence of a roof terrace, on the other hand, implies a surcharge on
the location parameter. Larger uncertainty, i.e. a positive effect on the standard deviation,
is associated with company housing, special kitchen equipment and the absence of facilities
for warm-water generation. Negative effects on the degrees of freedom were identified for
flats located in the basement, flats with a bathroom niche and those with special kitchen
equipment.
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Figure 3: Munich Rental Guide: Estimated non-linear effects for the location parameter (top
row), scale parameter (middle row) and the degrees of freedom (bottom row) obtained in a
high-dimensional GAMLSS. Dashed lines represent 95% confidence bands, estimated from
100 bootstrap samples.
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GAMLSS model: µ

−0.4648 0.46160

GAMLSS model: σ

−0.1665 0.0245

GAM model: µ

−0.411 0.4280

GAM expert model: µ

−0.9199 0.68980

Figure 4: Munich Rental Guide: Estimated spatial effects obtained for the high-dimensional
GAMLSS (top) and for GAMs (bottom). Estimates of the high-dimensional GAM (bottom
left) are compared with those of the expert GAM (bottom right).
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4.3 Predictive performance and prediction intervals

To analyse the prediction accuracy of the high-dimensional GAMLSS vs. that of the expert
models and GAMs, we carried out a 10-fold cross validation. In each of the CV samples, the
optimal boosting iterations were determined using an additional split-off data set. Hence,
from every training set of the CV circle, one-fifth of the flats were excluded to find the
optimal stopping iteration without touching the test data.
Figure 5 shows a parallel coordinate plot containing the average mean squared prediction
errors obtained from the four models (high-dimensional GAMLSS/expert GAMLSS/ high-
dimensional GAM/expert GAM). In accordance with the results of Kneib et al. (2010),
the inclusion of all available covariates in high-dimensional models pays off with respect to
increasing prediction accuracy. This is true for both GAMs and GAMLSS. In fact, the point
predictions are only marginally better for GAMLSS than for GAM.
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Figure 5: Munich Rental Guide: Mean squared error (MSE) in predictions compared for
different models. Grey lines represent MSE for the different cross-validation runs and the
dark line the average values.

While Figure 5 clearly suggests that the accuracy of point predictions obtained from classical
GAMs carries over to those obtained from GAMLSS, the inclusion of covariate effects on
parameters such as σ2 and df additionally allows for an improved accuracy of the prediction
intervals. Indeed, both GAMs and GAMLSS can be used to compute covariate-specific
prediction intervals PI(X) for the net rent per square metre in Munich. The practical
relevance of this approach is obvious: By setting lower and upper bounds for the expected
net rent (conditional on the values of the covariates), PIs provide information on the level
of variance in the net rent per square metre that tenants can expect.
We therefore use the conditional distributions of the four models to calculate the quantiles
needed for the corresponding PI. By definition, the α·100% of observations from a continuous
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distribution should be smaller than the associated α-quantile (denoted by Qα). A 95% PI is
therefore given by

PI0.95(X) = [Q0.025(X), Q0.975(X)]

(Meinshausen, 2006). It is clear that the three-parameter GAMLSS approach for the Munich
Rental Guide allows for the construction of more flexible PIs than obtained with common
GAMs, which rely on modelling the conditional mean of the net rent per square metre and
therefore may not reflect other covariate-specific effects on the variance or the shape of the
conditional distribution. As GAMLSS additionally regress scale and degrees of freedom to
the covariates, the size of the resulting PI – and not only their centre – explicitly depends
on a flat’s characteristics. This effect is evident in Figure 6, in which the PIs resulting
from high-dimensional GAMLSS and Gaussian models are compared. While the centres
of the intervals (i.e. the conditional means µi) are relatively similar, there is a noticeable
impact of the covariates on the quantiles of the conditional distribution(s) obtained with the
GAMLSS. Clearly, the normality assumption implies homoscedasticity for the GAMs and
therefore a constant width of all PIs obtained from these models. With GAMLSS, the sizes
of the PIs are much more flexible and they take into account the impact of the covariates on
the conditional variance of the net rent per square metre. This approach not only avoids the
assumption of homoscedasticity, already identified as a problem regarding the rental guide
(Stasinopoulos et al., 2000; Fahrmeir et al., 2004), but takes into account heteroscedasticity
to obtain better predictions.
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Figure 6: Munich Rental Guide: 95% prediction intervals based on the quantiles of the
modelled conditional distribution from GAMLSS (left) and GAM (right). The solid white
line represents point predictions (by which the values on the x axes were ordered); prediction
intervals are shaded grey. The dark points correspond to the observed net rents per square
metre contained in the sample.
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This additional flexibility pays off for the Munich Rental Guide, as demonstrated here in our
estimation of the coverage probability of the PIs from GAMLSS and GAMs. To evaluate
the prediction accuracy of the PIs, we first draw 100 bootstrap samples from the complete
data set and then fit both high-dimensional GAMs and GAMLSS models to the bootstrap
samples. The covariates of the out-of-bootstrap flats are used to compute the PIs for the
net rent per square metre of these flats. The average number of net rents lying within the
intervals (sample coverage) is then compared for the two methods. As can be seen in Table 1,
average sample coverage is closer to the expected coverage with the intervals obtained using
GAMLSS than with those derived from the GAM approach.

α level GAM GAMLSS
99% 97.49 (96.21–98.63) 98.60 (97.72–99.36)
97.5% 95.32 (92.40–97.30) 96.80 (95.17–98.10)
95% 92.23 (89.45–94.32) 93.93 (92.07–95.80)
90% 87.07 (83.86–90.44) 88.52 (85.23–91.32)

Table 1: Munich Rental Guide: Average sample coverage (percent) of the prediction intervals
obtained with high-dimensional GAM vs. GAMLSS. The range observed in 100 bootstrap
samples is presented in brackets.

5 Conclusion

As a natural extension of the well-established GAM framework, GAMLSS have gained in-
creasing popularity in recent years and their use has expanded to include many different
fields of application (see for example the references in Section 1 or the information provided
at http://gamlss.org). We applied GAMLSS to the Munich Rental Guide in order to adjust
for heteroscedasticity in regression models predicting the net rent of Munich flats. Build-
ing on earlier approaches to address the problem of heteroscedasticity in this type of data
(Stasinopoulos et al., 2000; Fahrmeir et al., 2004), we showed that the point predictions for
the net rent per square metre obtained from GAMLSS are highly competitive with those
obtained from mean regression methods. A substantial improvement of GAMLSS over tra-
ditional mean regression methods becomes evident when flat-specific covariates are used to
derive prediction intervals for net rents per square metre. In this case, the coverage prob-
abilities of intervals derived from GAMLSS are better than those obtained using Gaussian
methods.
For the analysis of the Munich Rental Guide data, which particularly include also a spa-
tial covariate, we developed the gamboostLSS algorithm, thereby extending the GAMLSS
methodology to the analysis of high-dimensional data with potentially large numbers of
informative covariates. Since estimation and selection of predictor effects are carried out
simultaneously in gamboostLSS, the new algorithm addresses one of the remaining problems
of the classical fitting methods currently available in R package gamlss (Stasinopoulos and
Rigby, 2007). In contrast to gamboostLSS, the latter techniques have not been designed to
handle high-dimensional data but instead rely on (partially biased) information criteria for
variable selection.
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Conversely, gamboostLSS can be considered as a natural extension of the gradient boosting
framework (Friedman, 2001) to include regression models with multiple predictors. Con-
sequently, the classical features of gradient boosting, such as shrinkage, variable selection
and additive prediction functions (and thus the interpretability of estimates), carry over to
each of the distribution parameters of a GAMLSS. In addition, the gamboostLSS algorithm
presented in this paper naturally adapts to the structure of GAMLSS specified in Rigby and
Stasinopoulos (2005). This cannot be accomplished with related machine-learning techniques
such as support vector machines (Vapnik, 1996) or random forests (Breiman, 2001).
Our simulation study demonstrates the capability of gamboostLSS to produce sparse models,
identifying the correct predictors in cases in which there are more covariates than observa-
tions (p > n). In low-dimensional settings, the algorithm converged to the same solution as
obtained with the fitting methods of Stasinopoulos and Rigby (2007).
A limitation of gamboostLSS is its computationally expensive tuning procedure based on
multi-dimensional cross-validation. Clearly, multi-dimensional stopping tends to become in-
feasible as the number of distribution parameters of a GAMLSS increases. A computationally
less burdensome alternative to multi-dimensional stopping would be to use the same stopping
iteration for all predictors (resulting in one-dimensional cross-validation). In simulations, we
did not find strong evidence to support the necessity of multi-dimensional cross-validation,
yet we noticed in the analysis of the Munich Rental Guide that multi-dimensional stopping
is more convenient for adjusting GAMLSS to different complexity levels in parameter sub-
models. Further research is warranted on the topic of stopping procedures for this class of
models. Another limitation of gamboostLSS is that classical tools for model diagnostics be-
come invalid if applied to boosting estimates. Specifically, assessing residuals for normality
may not be appropriate for gamboostLSS because boosting estimates shrink towards zero
and residuals may therefore contain some of the remaining structure of the predictor effects
not included in estimates of the GAMLSS parameters. Accordingly, in this study we relied
on a prediction-based framework to validate our method. It should be noted that the current
lack of appropriate model diagnostics is not a limitation restricted to gamboostLSS but is
inherent to all boosting methods.
In summary, the advantages offered by gamboostLSS are the following: (i) Variable selection
is accomplished automatically when gamboostLSS is applied. Gradient boosting produces
a sparse solution with respect to all distribution parameters of a GAMLSS, implying that
it is not necessary to rely on strategies based on information criteria. (ii) The proposed
gamboostLSS algorithm can be applied to high-dimensional data sets in which the number
of predictor variables exceeds the number of observations. This is currently not possible
with the classical fitting techniques proposed by Stasinopoulos and Rigby (2007) (iii) By
relying on an early stopping strategy, gamboostLSS has a built-in mechanism for the reg-
ularization of estimates. This essentially means that effect estimates shrink towards zero,
thereby decreasing the variability of predictor effects and improving the prediction accuracy
of the obtained GAMLSS solution. In view of these considerations, gamboostLSS offers
a framework for a fully data-driven mechanism to select variables and predictor effects in
GAMLSS.
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Implementation

The gamboostLSS algorithm developed in this paper is implemented in the R (R Develop-
ment Core Team, 2009) add-on package gamboostLSS (Hofner et al., 2010, available at
http://R-forge.R-project.org/projects/gamboostlss). Models can be fitted using the function
gamboostLSS(), which is based on the gradient boosting framework implemented in the
R package mboost (Hothorn et al., 2010a,b). By relying on the mboost package, gam-
boostLSS incorporates a wide range of base-learners, for example, those of linear, smooth,
spatial and random effects. In addition to making this infrastructure available for GAMLSS
models, mboost constitutes a well-tested, mature software in the back end. Convenience
functions to extract coefficients, plot the effects, make predictions or manipulate the model
are available in gamboostLSS.
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